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ABSTRACT 
 

In this chapter, the general formulations, closure methods, and capabilities of the non-

equilibrium sediment transport (NEST) modeling are comprehensively discribed. By 

integrating the 3-D model equations over the flow depth (or cross-section), the depth-

averaged 2-D (or 1-D) flow, suspended-load, and bed-load transport equations are 

derived. As an alternative approach, the depth-averaged bed-material load transport 

equation is derived by combining the bed-load and suspended-load equations. The 

momentum and suspended-load dispersion terms can be combined with the turbulent 

stress/diffusion terms or convection terms, or evaluated using analytical models of 

secondary flow if available. The near-bed exchange fluxes are assumed proportional to 

the difference between the actual and capacity (equilibrium) concentrations and transport 

rates of sediment via the adaptation coefficient   and/or the adaptation length L . The 

temporal lag between flow and sediment transport is modeled by introducing the bed-load 

velocity and the correction factor 
s  which is the ratio of the depth-averaged velocities 

of suspended load and flow. Methods and guidance have been developed to determine the 

sediment velocity, adaptation length, and transport capacity. In the case of non-uniform 

sediments, the mixing layer concept is adopted for bed material sorting, and a correction 

factor is introduced in sediment transport capacity formulas to account for the hiding and 

exposure effect in the bed materials. Additionally, turbulence closure, bed roughness, 

sediment transport over steep slope, sediment entrainment near in-stream structures, and 

bank erosion are briefly discussed to close and enhance the model. Numerical methods 

often used to solve the flow and sediment transport equations are briefly summarized, and 

test cases are selected to demonstrate the capabilities of the NEST model. 
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INTRODUCTION 
 

Sediment transport processes in surface waters are among the most complex and least 

understood phenomena in nature. The early research methodologies were primarily based on 

field observations and laboratory experimentations. With the rapid advances of fundamental 

theories, numerical algorithms, and computer technologies, computational modeling has been 

more and more widely applied to solve many sedimentation engineering problems.  

Many numerical models have been developed since 1950s. Most of the early models 

assume that bed load or total load is instantaneously in equilibrium at each computational 

node. Such models are referred to as equilibrium (or saturated, capacity) transport modeling 

approach (Thomas, 1982; Spasojevic and Holly, 1993). However, because of the dynamic 

nature (unsteadiness, non-uniformity) of surface water flows, sediment transport in nature is 

rarely in an equilibrium state. The assumption of local equilibrium need to be improved to 

take into account the non-equilibrium features of sediment transport. Therefore, non-

equilibrium sediment transport (NEST) modeling has emerged in recent decades as a more 

realistic technology. This approach renounces the assumption of local equilibrium and solves 

the actual transport equations for bed and suspended loads; thus, it can describe the temporal 

and spatial lags between flow and sediment transport. Examples of NEST models with 

varying levels of complication have been reported by Han (1980), Bell and Sutherland 

(1983), Armanini and di Silvio (1988), Rahuel et al. (1989), and Wu et al. (2000a, 2004). To 

meet the needs of the more recent engineering practices, the NEST modeling have been 

further advanced and applied to simulate non-cohesive/cohesive sediment transport, local 

scour around in-stream structures, channel meandering, dam/levee breaching, sediment 

transport in vegetated channels, upland soil erosion, coastal sedimentation, etc.  

The NEST modeling approach is introduced in two chapters. Its general formulations are 

presented in this chapter, including governing equations, numerical solution methods, and 

model closures. Presented in the next chapter are its extensions and applications in specific 

cases, such as rapidly-varying transient flows over movable beds, sediment transport in 

coastal waters and vegetated channels, and upland soil erosion. In each application area, test 

examples are selected to demonstrate the capabilities of the NEST modeling approach. 

 

 

GOVERNING EQUATIONS 
 

3-D Flow and Suspended-Load Transport Equations 

 

The phenomena of flow and sediment transport in surface waters are characterized by 

turbulence, free-surface variation, bed change, phase interaction, etc. In order to model such 

complex processes, simplifications and assumptions are usually needed. At the present, most 

sediment transport models assume low sediment concentration, so that the hydrodynamics of 

the flow is not affected by sediment movements and the flow and sediment transport 

equations can be solved separately or decoupled. It is also assumed that the time scale of bed 

change is much larger than that of flow movement, so that in each time step the flow can be 
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calculated by assuming a ―fixed‖ bed. Based on these assumptions, the 3-D flow field can be 

determined using the Reynolds-averaged continuity and Navier-Stokes equations given by 

Equations (1) and (2), where t  is time, 
ix  is the thi  coordinate ( , ,x y z  for 1,2,3i  ), 

iu  is 

the flow velocity component in the thi  coordinate direction, 
iF  includes the external forces 

per unit volume, including the gravity force,   is the flow density, p  is the pressure, and ij  

denotes the turbulent stresses, which are determined using a turbulence model. 
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For the shallow water flow, the pressure can be assumed to be hydrostatic, thus yielding 

the simplified 3-D governing equations as given by Equations (3), (4), and (5), where x  and 

y  are the horizontal Cartesian coordinates, z  is the vertical coordinate, 
sz  is the water 

surface elevation, g  is the gravitational acceleration, and f  is the Coriolis coefficient. 
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The hydrostatic pressure assumption brings significant simplification to the full three-

dimensional problem of Equations (1) and (2). However, this assumption is valid only for the 

gradually varying surface water flows. A full 3-D model without hydrostatic pressure 

assumption should be used in the regions of rapidly varying flows, such as flows around 

bridge piers, dikes, and bendway weirs (Wu et al., 2000a; Jia et al., 2001). Since most flows 

in rivers, estuaries and coastal zones can be assumed as shallow water flows, the hydrostatic 

pressure assumption has been often adopted. The 3-D models developed by Sheng (1983), 

Wang and Adeff (1986), Casulli and Cheng (1992), Jankowski et al. (1994), and Wu and Lin 

(2011) are based on the hydrostatic pressure assumption. At the free surface, the flow satisfies 

the kinematic condition given by Equation (6), where 
hu , 

hv , and 
hw  are the flow velocity 

components at the water surface. 
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Since low sediment concentration is assumed, the interactions among different size 

classes of moving sediment are ignored, and thus the transport of each size class of sediment 

can be handled individually. As shown in Figure 1, the moving sediment (total load or bed-

material load) is divided into suspended load and bed load, and hence the flow depth h  is 

divided into a bed-load layer with a thickness   and the suspended-load layer above it with a 

thickness h  . The exchange of sediment between the two layers is through deposition 
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(downward sediment flux) at a rate of bkD  and entrainment from the bed-load layer (upward 

flux) at a rate of bkE . 

 

 
Figure 1. Configuration of flow and sediment transport (Wu et al., 2000a) 

 

The distribution of sediment concentration in the suspended-load layer is governed by the 

convection-diffusion equation as given by Equation (7), where kc  is the local concentration 

of the thk  size class of suspended load, 
sk  is the sediment settling velocity, 

s  is the 

turbulent diffusivity coefficient of sediment. The turbulent diffusivity coefficient is 

determined as /s t c   , where 
c  is the turbulent Schmidt number, usually having a value 

between 0.5 and 1.0 or determined by using van Rijn’s (1989) method. In Equation (7), 3j  is 

the Kronecker delta with 3j   indicating the vertical direction, the subscript k  denotes the 

sediment size class index, and N  is the total number of sediment size classes. Note that the 

sediment size index k  does not follow the summation convention in Equation (7) and the 

following equations. 
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At the free surface, the vertical sediment flux is zero and hence the condition given by 

Equation (8) is applied. At the lower boundary of the suspended-load layer, the deposition 

rate is bk sk bkD c , while the entrainment rate bkE  is given by Equation (9), where b kc   is 

the capacity or equilibrium concentration at the reference level bz z    and needs to be 

determined using an empirical relation. Here, 
bz  is the bed surface elevation. 
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Depth-averaged Flow and Sediment Transport Equations 
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The depth-averaged quantity   of a three-dimensional variable   is defined by 

Equation (10). Integrating Equations (3), (4), and (5) over the flow depth and using the 

Leibniz integral rule yields Equations (11), (12), and (13), respectively. In these equations, U  

and V  are the depth-averaged flow velocities in x  and y  directions, 
xxT , 

xyT , 
yxT , and 

yyT  

are the depth-averaged turbulent stresses, 
xxD , 

xyD , 
yxD , and 

yyD  are the dispersion terms 

due to the non-uniformity of flow velocity and the effect of secondary flow, which are 

important in the situations of curved channels. The bed shear stresses bx  and by  are 

determined by 2 2

fc U U V   and 2 2

fc V U V  , respectively, where 2 1/3

fc gn h  and 

n  is the Manning roughness coefficient. The stresses sx  and sy  represent the shear forces 

acting on the water surface, usually caused by winds. 
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Unlike the depth-averaged quantities defined by Equation (10), the depth-averaged 

suspended-load concentration, 
kC , is defined by Equation (14), where 

sU  is the stream-wise 

depth-averaged velocity, and 
su  is the local flow velocity projected to the stream-wise 

direction. By definition,    
s

b

z

s s
z

U u dz h

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

  , but 
sU  is approximately set as the 

resultant depth-averaged velocity 2 2U U V   at each vertical line. 
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Integrating Equation (7), the three-dimensional sediment transport equation, over the 

suspended-load zone leads to Equation (15) as shown by Wu (2007), where xkS  and ykS  are 

the dispersion terms to account for the effect of the non-uniform distributions of flow velocity 

and sediment concentration. In nearly straight (or slightly curved) channels with simple 

geometry, the dispersion terms are usually combined with either the convection terms by 

introducing a correction factor or the diffusion terms by adjusting the diffusivity coefficient 

(then called the mixing coefficient). In curved channels, the dispersion terms become more 

important and will be discussed later. The parameter sk  is a correction factor for suspended 

load, which is actually the ratio of the depth-averaged sediment and flow velocities. It 
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accounts for the temporal lag between flow and suspended-load transport in the depth-

averaged 2-D model and is given by Equation (16). 
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Integrating Equation (7) over the bed-load zone leads to the bed-load mass balance 

equation given by Equation (17), where 
mp  is the porosity of bed material at the bed surface, 

bkq  is the bed-load transport rate by volume per unit time and width (m
2
/s), 

bku  is the bed-

load velocity, and 
bx , by  are the direction cosines of bed-load movement. The bed load is 

usually assumed to move along the direction of bed shear stress but may be affected by 

secondary flows in curved channels and gravity in channels with steep bed and bank slopes. 
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The first term on the left-hand side of Equation (17) represents the bed change, which 

results from the exchange between moving sediment and bed material. The second term 

accounts for the storage effect. Since the bed-load velocity 
bku  is usually slower than the flow 

velocity, Equation (17) accounts for the temporal lag between flow and bed-load transport.  

Summing Equations (15) and (17) leads to the bed-material load or total load transport 

equation given by Equation (18), where 
tkC  is the depth-averaged concentration of bed-

material load, 
sr  is the ratio of suspended load to bed-material load, and tk  is a correction 

factor for bed-material load related to 
sk  and 

bku  as shown in Equation (19). 
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Near-Bed Sediment Exchange and Bed Change Equations  
 

In the 3-D model, the suspended-load transport equation, Equation (7), is solved with the 

lower boundary condition specifying the deposition flux 
bkD  ( sk bkc ) and entrainment flux 

bkE  ( sk b kc  ). The problem is closed by using an empirical formula to determine the near-

bed suspended-load capacity concentration 
b kc 

. However, in the depth-averaged 2-D (or 1-

D) model, the deposition flux 
bkD  is usually determined by relating the near-bed suspended-
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load concentration 
bkc  to the depth-averaged suspended concentration

kC , because 
bkc  is not 

a dependent variable to be solved.  The entrainment flux 
bkE  can be determined by using an 

empirical formula for 
b kc 

 or by relating 
b kc 

 to the depth-averaged suspended-load capacity 

concentration kC  that is determined using an empirical formula. Therefore, the net exchange 

flux can be determined using Equation (20) as proposed by Han (1980), where   is the 

adaptation coefficient of suspended load. 

  bk bk sk k kD E C C     (20) 

In the case of only suspended-load transport, Equation (20) is often used to determine the 

bed change as described by Equation (21).  In the case of only bed-load transport, Daubert 

and Lebreton (1967), Wellington (1978), Nakagawa and Tsujimoto (1980), Phillips and 

Sutherland (1989), and Thuc (1991) used the relationship given by Equation (22),  where 
bL  

is the adaptation length of bed load and b kq   is the equilibrium or capacity transport rate of 

bed load. 
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For general cases, in which bed load and suspended load are equivalently important, 

Equation (23) is used for bed change (Wu, 2007), where L  is the adaptation length of 

sediment. Note that even though Equation (23) seems to be the summation of Equations (21) 

and (22), L  is not the same as the bed-load adaption length 
bL , due to the interaction 

between bed load, suspended load and bed material. This will be explained later in more 

detail. Equation (23) assumes that the exchange between suspended load and bed load directly 

contributes to bed changes. As bed load is located between suspended load and bed material, 

the exchange between suspended load and bed load results in change of bed load first and in 

turn bed surface change. However, the bed load layer is usually very thin, so that the 

assumption in Equation (23) is acceptable. Substituting Equation (23) into Equation (17) 

yields Equation (24) for the non-equilibrium transport of bed load. 
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Thus, bed load is determined with Equation (24) and suspended load is determined with 

Equations (7) and (15) in the 3-D and depth-averaged 2-D models, respectively. The bed 

change can be determined with Equation (23) or the overall sediment balance equation that is 

derived by summing Equation (17) with Equation (15) or Equation (7) integrated over the 

suspended-load zone. This approach is based on separation of suspended load and bed load. 

The important parameters include the sediment adaptation length L , the bed-load transport 

capacity b kq  , and the suspended-load near-bed capacity concentration b kc   
in a 3-D model. 

In a depth-averaged 2-D model, the important parameters are L , b kq  , the suspended-load 



Weiming Wu 8 

depth-averaged capacity concentration kC , and the suspended-load adaptation coefficient  . 

The sediment transport capacity quantities need to be determined using empirical formulas, 

which can be written in a general form as given by Equation (25),  where bkp  is the bed 

material gradation at the mixing (surface) layer; bkc  and kC  are the potential near-bed and 

depth-averaged capacity concentrations of the thk  size class of suspended load, respectively, 

and bkq  is the potential capacity transport rate of the thk  size class of bed load. 
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An alternative NEST modelling approach in the depth-averaged 2-D (or 1-D) model is to 

combine bed load and suspended load as bed-material load, whose mass balance is governed 

by Equation (18). To close this approach, the near-bed exchange flux relation given by 

Equation (26) is used, where t  and tL
 
are the adaptation coefficient and length of bed-

material load (or total load), respectively, 
tkq  and 

*t kq  are the actual and capacity transport 

rates of bed-material load (or total load), respectively, and 
*t kC  is the bed-material load 

capacity concentration. The adaptation coefficient, t , is related to tL   by  ( )t t sL Uh  . 

Substituting Equation (26) into Equation (18) leads to the bed-material load transport 

equation given by Equation (27). 
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Consequently, the bed-material load is determined with Equation (27), and the bed 

change is determined using Equation (26). This approach solves one less transport equation 

than the suspended-load and bed-load separation approach for each sediment size class. This 

is computationally more efficient when multiple sediment size classes are considered. The 

important parameters in this approach are the adaptation coefficient t  (or adaptation length 

tL ) and the bed-material load transport capacity. The latter is determined using an empirical 

formula given by Equation (28),  where tkC  is the potential capacity concentration of the thk  

size class of bed-material load. 

  *

* 1,2, ,t k bk tkC p C k N   (28) 

Note that the governing equations for only the 2-D and 3-D models are described above. 

The depth-averaged 2-D model equations can be reduced to 1-D equations by eliminating the 

terms for lateral direction. More generally, one can derive the 1-D model equations by 

integrating Equations (3)–(5) and (7) over the cross-section. The details can be found in Wu 

(2007).  

 

Bed Material Sorting Equation 
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To account for the variation of bed material gradation in time and space, the bed material 

is often divided into several layers at each computational node. The surface layer is the 

mixing layer that directly participates in the exchange with the sediment moving with the 

flow. Based on mass balance, Equation (29) for the variation of bed material gradation in the 

mixing layer can be derived (Wu, 1991; Wu et al., 2004), where bkp  is the bed material 

gradation in the mixing layer, 
m  is the mixing layer thickness, which is related to bed 

material size or bed form height. In the above equation, the bed deformation rate, /bz t  , is 

given by  
1

N

b bk k
z t z t


     , *

bkp  is 
bkp  when / / 0m bt z t     , and *

bkp  is the bed 

material gradation at the subsurface layer (below the mixing layer) when 

/ / 0m bt z t     . The last term on the right-hand side represents the exchange between 

the mixing layer and the subsurface layer. 

 *( )m bk b m b

bk

k

p z z
p

t t t t

       
     

      
 (29) 

The bed material sorting model in Equation (29) is similar to Karim and Kennedy’s 

(1982) mixing layer model, but different from Spasojevic and Holly’s (1993) active layer 

model, where the active layer includes the bed-load layer and the mixing layer.  

 

 

AUXILIARY RELATIONS 
 

Turbulence Closure 

 

The turbulent stresses in the 2-D and 3-D models need to be determined by turbulence 

closure models. Most of the common turbulence models are based on Boussinesq’s eddy 

viscosity concept shown in Equation (30), where k  is the turbulent kinetic energy, and t  is 

the turbulent or eddy viscosity. The eddy viscosity is usually determined by the parabolic 

model, the mixing length model, or the linear k   turbulence models. The linear k   

turbulence models include the standard, low-Reynolds number, RNG, and non-equilibrium 

k   turbulence models. 

 
2

3

ji

ij t ij

j i

uu
k

x x
  

 
   

   

 (30) 

The Boussinesq’s assumption, which adopts an isotropic eddy viscosity for all Reynolds 

stresses, fails for the flows with sudden changes in mean-strain rate or with ―extra‖ rates of 

strain, e.g. curvilinear flows. In these cases, the Reynolds stresses adjust to such changes at a 

rate unrelated to the mean flow processes and time scale. To capture this kind of turbulence-

generated flow features, the non-linear k   turbulence model, the Reynolds-stress/flux 

model and the algebraic stress/flux model should be used (Rodi, 1993). In addition, Large 

Eddy Simulation (LES) and Direct Numerical Simulation (DNS) have also been used in 

modeling of sediment-laden flows. 

 

Channel Roughness 
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In natural rivers, the banks and bed usually have different roughness. The bank roughness 

elements include bank materials, channel training works, hydraulic structures, and vegetation, 

while the bed roughness elements include rigid materials as well as movable bed forms, such 

as ripples, dunes, alternate bars, and islands. For the banks and rigid bed, a constant 

roughness can be used. For the movable bed in an alluvial river, the bed roughness changes 

with flow conditions and is thus more difficult to evaluate. Einstein and Barbarossa (1952), 

Engelund and Hansen (1967), van Rijn (1984c), Wu and Wang (1999) and others have 

proposed empirical or semi-empirical methods to calculate the roughness on movable beds. 

However, because these empirical relations usually rely on the data sets used and may give 

different predictions at different sites or times; caution must be exercised when applying them 

to a site-specific study. The most reliable approach to handle the channel roughness is still 

calibration using the available data measured at the study site.  

 

Sediment Adaptation Length and Coefficient 

 

The adaptation length, which characterizes the distance for sediment to adjust from a 

non-equilibrium state to the equilibrium state, is a very important parameter in the NEST 

model. Traditionally, the adaptation length of suspended load is given by Equation (31). The 

coefficient   can be calculated with Armanini and di Silvio’s (1988) method, Zhou and 

Lin’s (1998) method, or other semi-empirical methods, which were developed with 

simplifications and assumptions, usually for flat beds. Values of   calculated from these 

methods are usually larger than 1. However, in practice,   has been given different values by 

many researchers, most of them being less than 1. Based on results obtained from validation 

tests of 1-D models in many reservoirs and rivers, it has been suggested that a value of 1 

should be used for the case of strong erosion, 0.25 for strong deposition, and 0.5 for weak 

erosion and deposition (Han, 1980; Wu, 1991; Wu et al., 2004). 

 
s

s

Uh
L


  (31) 

For bed load, Bell and Sutherland (1983) found that the adaptation length 
bL  is a 

function of time t  in an experimental case of bed degradation downstream of a dam due to 

clear water inflow. In numerical modeling, Nakagawa and Tsujimoto (1980), Phillips and 

Sutherland (1989), Thuc (1991), and Wu et al. (2000a) adopted 
bL  as the average saltation 

step length of sand on the bed as observed in laboratory experiments, while Rahuel et al. 

(1989) and Fang (2003) used much larger values for 
bL  (one to two times the numerical grid 

length) in the case of natural rivers. One reason for the disparity is that the adaptation length, 

especially for bed load, is closely related to the dimensions of the sediment movements, bed 

forms, and channel geometry of each study case, which are significantly different between 

laboratory and field situations. In laboratory experiments, sediment transport processes are of 

small scales, such as sand saltation, ripples, and dunes, while in streams sediment transport 

processes occur usually at larger scales in longer periods. More recently, Wu et al. (2004) 

suggested that the adaptation length of bed load may be the same as the dimension of the 

dominant bed forms, such as the length of sand dunes (about 5–10 times the flow depth) in 

laboratory flume cases, and the length of alternate bars (about 6.3 times the channel width, 
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Yalin 1972) in field cases. This suggestion has given very promising results in a series of 

applications.  

Because bed-material load is a combination of bed load and suspended load, its 

adaptation length tL  can be given the larger of 
bL  and 

sL   values (Wu et al., 2004) as 

described by Equation (32) or a weighted average of 
bL  and 

sL  as given by Equation (33). 

  max ,t b sL L L  (32) 

  1t s b s sL r L r L    (33) 

By comparing Equations (23) and (26), one can find that the adaptation length L  in 

Equation (23) is approximately equal to 
tL  in Equation (26). This can be derived by 

assuming that the bed-load layer is very thin and in turn t  . On the other hand, L  or 
tL  

reduces to 
bL  in the case of only bed-load transport. 

It should be pointed out that the values of adaptation length and coefficient vary in 

different cases. Calibration using available measurement data is recommended to obtain more 

reliable results for real-life problems.  

 

Bed-Load and Suspended-Load Velocities  

 

Bed load usually moves by rolling, sliding, and saltation, depending on flow and 

sediment conditions. Saltation is the dominant mode of bed-load transport, while rolling (and 

to a lesser extent, sliding) occurs only near the threshold of entrainment and between 

individual saltation jumps (Bridge and Dominic, 1984). van Rijn (1984a) investigated the 

characteristics of particle saltation and developed an empirical formula for the bed-load 

velocity. Wu et al. (2006) verified van Rijn’s formula using three sets of experimental data 

measured by Francis (1973), Luque and van Beek (1976) and Lee and Hsu (1994), and 

recalibrated the bed-load velocity formula as given by Equation (34), where 
s  and   are the 

specific weights of sediment and water, respectively, d  is the sediment diameter, T  is the 

transport stage number defined as 1b cT    , with 
b  being the total bed shear stress 

measured in the three experiments where no significant bed forms developed. The coefficient 

and exponent in the original van Rijn’s formula are 1.5 and 0.6, respectively. 

 0.51.64
( 1)

b

s

u
T

gd 



 (34) 

There is a lag between the local flow and suspended-load velocities. This has been 

observed experimentally by Muste and Patel (1997) and discussed in detail by Cheng (2004). 

A two-phase flow model (Wu and Wang, 2000; Greimann and Holly, 2001) can be used to 

describe this local velocity lag in general situations. However, according to the experimental 

observations of Muste and Patel (1997), the local stream-wise velocity of suspended load with 

a diameter of 0.23 mm is less than the local flow velocity by as much as 4%. This local 

velocity difference is negligible in comparison with the depth-averaged flow and suspended-

load velocity difference (Wu et al., 2006). Thus, the local velocity lag may be ignored, and 

only the depth-averaged velocity lag is discussed below. 

Equation (16) can be rewritten as s sedU U  , in which sedU  is the concentration-

weighted velocity of suspended load. Because higher sediment concentration corresponds to 
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smaller flow velocity near the channel bottom while lower sediment concentration 

corresponds to larger flow velocity in the upper flow layer, 
sedU U  and 

s  normally is less 

than 1. By using the logarithmic distribution of flow velocity, 

{1 [1 ln( / )] ( )}hu U g z h C    , and the Rouse distribution of suspended-load 

concentration with the reference level set at 0.01h , Wu et al. (2006) obtained the relation of 

s  with the Rouse number ( )s U  
 and the Chezy coefficient 

hC , as shown in Figure 2. It 

can be seen that 
s  decreases as the Rouse number increases and the Chezy coefficient 

decreases. For fine sediments, 
s  is close to 1 and the lag between the depth-averaged flow 

and sediment velocities can be ignored. However, for coarse sediments, this lag can be up to 

60% of the flow velocity and should be considered.  

 

 
 

Figure 2. Factor 
s  as a function of the Rouse number and the Chezy coefficient 

 

Non-cohesive Sediment Transport Capacity 

 

The sediment transport capacity formulas proposed by Meyer-Peter and Mueller (1948), 

Dou (1963), Yalin (1972), and van Rijn (1984a) are often used to calculate the discharge of 

uniform bed load. These formulas are also used for the total discharge of non-uniform bed 

load. For the fractional discharge of non-uniform bed load, the pioneering research was 

attributed to Einstein (1950), followed by Parker et al. (1982), Wu et al. (2000b), and others.  

One of the most widely recognized methods for the suspended-load discharge is the 

Einstein’s (1950) method, which integrates the product of sediment concentration c  and 

stream-wise flow velocity u  over the suspended-load layer. However, the empirical formulas 

proposed by van Rijn (1984b) and Zhang (1961) (see Zhang and Xie, 1993) for the total 

discharge of suspended load are much simpler than Einstein’s (1950) method and have 

comparable reliability. Wu et al. (2000b) established a formula to directly calculate the 

fractional discharge of non-uniform suspended load. 

The total discharge of bed-material load can be determined by the methods proposed by 

Einstein (1950), Engelund and Hansen (1967), Ackers and White (1973), Yang (1973), and 

van Rijn (198a, b). For the fractional discharge of non-uniform bed-material load, the 
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modified Ackers and White’s (1973) formula (Day, 1980; Proffit and Sutherland, 1983), 

SEDTRA module (Garbrecht et al., 1995), and Wu et al. (2000b) have been often used. 

The capacity near-bed concentration of uniform suspended-load can be determined by 

using the methods proposed by van Rijn (1984b), Zyserman and Fredse (1994) and others. 

For the fractional near-bed concentration of non-uniform suspended load, the empirical 

formulas proposed by Einstein (1950) and Garcia and Parker (1991) can be used. However, 

two issues should be noted. One is that the measurement of suspended-load concentration 

near the channel bed is very difficult. Usually, the near-bed concentrations have to be 

extrapolated from the measured sediment concentrations in the upper zone with the aid of an 

assumed concentration profile along the water depth. Therefore, the accuracy and reliability 

of this analysis are highly dependent on the selection of sediment concentration distribution 

near the bed. The other important issue is that different reference levels have been used to 

define the near-bed concentration in different formulas.  

The sediment transport capacity formulas in the literature are mostly empirical or semi-

empirical and have large discrepancy among them. Comparisons of the total-discharge 

formulas have been performed by Brownlie (1981), Yang and Wan (1991), and others. Most 

of these tests show that Ackers and White’s (1973), Engelund and Hansen’s (1967), and 

Yang’s (1973) formulas are relatively reliable for the total discharge of bed-material load. 

Ribberink et al. (2002) and Wu and Wang (2003) tested the formulas for the fractional 

discharge of non-uniform bed-material load, and found that the Wu et al. (2000b) formula and 

the SEDTRA module perform better. However, calibration and validation using site-specific 

data is highly recommended before applying a sediment transport formula to a real-life 

problem. 

The formulas of Wu et al. (2000b) for fractional bed-load and suspended-load transport 

capacity are given by Equations (35) and (36), respectively, where 
*b kq  and 

*s kq  are the bed-

load and suspended-load transport rates of sediment size class k  by volume per unit time and 

width (m
2
/s), 

kd  is the representative diameter of size class k  of the sediment mixture, 
bkp  is 

the fraction of sediment size class k  in the surface layer of bed material, ,cri k  is the critical 

shear stress for the incipient motion of sediment size k  on the bed, U  is the depth-averaged 

flow velocity,   is the shear stress on the wetted perimeter of the cross-section including bed 

and banks, and 
b   is the bed shear stress corresponding to the grain roughness. The bed shear 

stress corresponding to the grain roughness is given by  
3/2

b bn n   , where 
b  is the bed 

shear stress, n  is the Manning coefficient of grain roughness calculated with 1/6

50 20n d  , 

and n  is the Manning coefficient of bed roughness (including grain and form roughness). 

 
 
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 (35) 

 
 
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,

0.0000262 1
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
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  
    

    

 (36) 

Using the bed-load transport rate relation * *b k b k bkq c u  and Equations (34) and (35) 

yields Equation (37) for near-bed suspended-load capacity concentration, where   is the bed-
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load layer thickness, set as max(
502 , 0.01 , 0.5 rd h  ), in which 

50d  is the median diameter of 

bed material, h  is the water depth, and 
r  is the sand ripple height. The coefficient a  is 

about 1.64 according to Equation (34) and can be set as a calibration parameter. 

 

1.7

*

,

0.0053 1k b

b k bk

cri k

d
c p

a



 

 
   

 

 (37) 

Another issue related to non-uniform sediment transport capacity is that the hiding and 

exposure mechanism in bed material needs to be considered through the introduction of 

correction factors in the formulas. Coarse particles have higher chances of exposure to the 

flow, while fine particles are more likely sheltered by coarse particles. This hiding and 

exposure mechanism significantly affects non-uniform sediment transport. The correction 

factors of Egiazaroff (1965), Ashida and Michiue (1971), Hayashi et al. (1980), and Parker et 

al. (1982) are functions of the non-dimensional sediment size 
k md d  or 

50kd d . These 

functions are simple but do not consider the effect of bed material size composition. Wu et al. 

(2000b) derived the hiding and exposure probabilities of sediment particles in the bed using 

the bed material size composition and suggested Equation (38) for the critical shear stress for 

non-uniform sediment incipient motion, where 
cri  is the critical Shield number for the 

incipient motion of the mean or median diameter of the bed sediment, and m  is an empirical 

parameter. Using laboratory and field data, the calibrated values were found to be 0.03cri   

and 0.6m  .  The hidden (
hkp ) and exposed (

ekp ) probabilities of particles 
kd  in the bed 

material are given by Equation (39). 
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 (38) 
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The critical shear stress ,cri k  determined with Equation (38) is used in the fractional bed-

load and suspended-load transport capacity formulas of Wu et al. (2000b), Equations (35) and 

(36), to consider the effect of hiding and exposure mechanism on sediment transport. 

 

Sediment Transport on Steep Slope 

 

For a steep bed or bank slope, the effect of the gravity on sediment transport is an 

important factor. Two approaches have been applied in literature to consider this effect in the 

sediment transport capacity formula that can be written as  b b cq f    , where b  is the 

bed shear stress and c  is the critical shear stress for the incipient motion of bed material. 

One approach is to correct the critical shear stress c  using the method of Brooks (1963) or 

van Rijn (1989). The other approach is to add the stream-wise component of the gravitational 

force in the bed shear b , as shown in Equation (40), without modifying c  (Wu, 2004), 

where be  is the effective tractive force,   is the bed angle with the horizontal, with positive 

values denoting downslope bed,   is the repose angle, and 0  is a coefficient related to flow 
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and sediment conditions as well as the bed slope (Wu, 2004). Equation (40) can be used to 

modify many sediment transport formulas, such as the van Rijn (1984a, b) formula and the 

Wu et al. (2000b) formula. 

 0 sin sinbe b c        (40) 

The effect of the gravity on the direction of bed-load transport has been investigated by 

Engelund (1974), Sekine and Parker (1992), and Wu (2004). To account for gravity, the 

parameters bx  and by  in Equation (24) are replaced by ,bx e  and ,by e  as shown in 

Equation (41), where x  and y  are the bed angles in the x  and y  directions (Wu, 2004). 

 
, 0
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sin sin
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      

      

  

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 (41) 

 

Effect of Helical Flow in Curved Channel  

 

Helical (secondary) motions in curved channels play an important role in the evolution of 

channel morphology, inducing deposition along the inner bank and erosion along the outer 

bank. This phenomenon can be simulated with a three-dimensional model, as shown by Wu et 

al. (2000a) and others. However, to reduce computation time, a number of investigators, e.g., 

Flokstra (1977), Jin and Steffler (1993), and Wu and Wang (2004) have modified the depth-

averaged 2-D models to include the effect of the secondary helical motions. The dispersion 

terms in Equations (12), (13) and (15) can be used to serve this purpose. Jin and Steffler 

(1993) calculated these terms by solving two extra equations that are obtained by integrating 

the 3-D horizontal moment-of-momentum equations over the depth. Flokstra (1977) and Wu 

and Wang (2004) determined these terms by using Equation (42) for the vertical distribution 

of the helical flow and the Rouse distribution or Lane-Kalinske distribution for the 

suspended-load concentration along the depth. 
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In Equation (42), nu  is the local velocity in the cross-stream direction, Un is the depth-

averaged velocity in the cross-stream direction, 
sb  is the coefficient with a value of about 6.0, 

and I  is the intensity of helical flow. Theoretically, sI U h r  at the channel centerline 

(Rozovskii, 1957). Here, r  is the local radius of curvature. For the entire channel bend, de 

Vriend (1981) proposed a differential transport equation to determine I . Wu and Wang 

(2004) simplified this differential equation into Equation (43) for the helical flow intensity in 

the fully developed region, where 
I  is an empirical coefficient, B  is the channel width at 

the water surface,   is the dimensionless transverse coordinate ( /y B ), with 0   at the 

inner bank and 1   at the outer bank,  and 5/6

a I t cT D r n gh  with 
t  being an empirical 

coefficient and 
cr  the radius of curvature at the channel centerline. 
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Equation (43) shows that the helical flow intensity profile along the cross-section is 

determined by I  and t . Usually, I  determines the magnitude of I , while t  determines 

its lateral distribution. According to calibrations using laboratory and field measurements, I  

is in the range of 1.0–2.0, and t  has a value of about 3.0. 

By using the power law for the stream-wise flow velocity and the linear model, Equation 

(43), for the helical flow velocity, Wu and Wang (2004) derived dispersion transports in 

Equations (12) and (13) as shown in Equations (44), (45), and (46). In these equations, 
ii  

are the coefficients of transformation between the (x, y) and (s, n) coordinate systems and m is 

usually about 7. 
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By using the power law for the stream-wise flow velocity, the linear law for the helical 

flow velocity and the Lane-Kalinske distribution for the suspended-load concentration, Wu 

and Wang (2004) derived the suspended-load dispersion fluxes in Equation (15) as given by 

Equations (47) and (48). The function ( )f z  is given by Equation (49) and   is defined by 

Equation (50). In addition, for the effect of the helical flow on the bed-load transport 

direction, the methods proposed by Engelund (1974) and Odgaard (1981) can be used. 
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Local Scour near In-stream Structures 

 

The local scour near in-stream structures, such as bridge piers, abutments and spur-dykes, 

is significantly affected by the three-dimensional local flow features, such as the downward 

flow, horseshoe and wake vortices, the localized pressure gradient, and turbulence intensity. 

At present, the highly complex, three-dimensional near-field flows can be calculated 

reasonably well with advanced turbulence models, such as linear and non-linear k   

turbulence models and LES. The suspended-load and bed-load transport near in-stream 

structures can be calculated using Equations (7) and (24), respectively. However, it has been 

found that some model parameters, such as sediment transport capacity and adaptation length, 
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may be different for gradually and rapidly varied flows. In particular, the sediment transport 

capacity of rapidly varied flows is affected by the aforementioned local flow features. Based 

on the analysis of the forces acting on sediment particles near the bed exerted by rapidly-

varied flows, Wu (2007) modified the van Rijn (1984a, b) formulas of equilibrium bed-load 

transport rate and near-bed suspended-load concentration for the simulation of local scour by 

determining the effective tractive stress, e , and critical shear stress for sediment incipient 

motion, c , as given by Equation (51). 
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In Equation (51), dp  is the dynamic (non-hydrostatic) pressure,  d s
p

 
is the stream-

wise gradient of dynamic pressure near the bed, d  is the sediment size, a  is a coefficient 

assumed as 4/π, 0c  is the critical shear stress for sediment incipient motion on a flat bed 

under uniform flow determined using the Shields curve, and Kp, Kd, Kg are the correction 

factors due to the effects of vertical dynamic pressure gradient, downward flow, and bed 

slope. The correction factors are defined in Equation (52), where β is the impact angle of flow 

to the bed. 
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An alternative approach can be derived by removing the correction factor Kg from the 

second relation in Equation (51), but adding the stream-wise gravity component in the 

effective tractive stress in the first relation as shown in Equation (40).  

 

Bank Erosion and Mass Failure 

 

Bank erosion is the main cause of channel widening and meandering. To realistically 

model the morphological evolution of channels with movable banks, both bed and bank 

changes should be simulated (Duan et al., 2001; Wu et al., 2004). Usually, for a non-cohesive 

bank, the bank material fails in particles when the slope angle is larger than the repose angle. 

The particles slide to the bank toe and form a new slope with the repose angle. In the 

simulation of this sliding (avalanche) process, mass conservation should be satisfied. Wu 

(2007) presented such an algorithm, which considers a cluster comprising of a cell centered 

by node P with its eight adjacent cells based on a rectangular or quadrilateral mesh. The slope 

angle between node P and each of the eight adjacent nodes is checked against the repose 

angle and the mass balance equation is derived and used to calculate the sliding flux and in 

turn the bed change on the cluster. This algorithm was later improved by adopting different 

repose angles for the submerged sediment and the emergent sediment above the water surface 
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(Wu et al., 2012). The emergent sediment above the water surface may exhibit apparent 

cohesion due to suction and moisture and thus have steeper repose angle than the submerged 

sediment. 

For a cohesive bank, the bank material collapses in the form of mass failure, a 

discontinuous phenomenon. The bank instability and mass failures may be caused by bed 

degradation and lateral fluvial erosion at bank toes as well as the pore pressure change in the 

bank soil. Bank failures can be planar, rotational, cantilever, or piping- or sapping-type. 

Planar and rotational failures usually occur on the homogeneous, non-layered banks, whereas 

cantilever failures usually happen on the layered banks. Piping- or sapping-type failures most 

likely occur on the heterogeneous banks where seepage flow is often observed.  

Arulanandan et al. (1980) established an empirical relationship for calculating the erosion 

of bank toes. Osman and Thorne (1988) proposed an algorithm to analyze the stability of 

cohesive banks, with the safety factor being defined as the ratio of the resistance and driving 

forces for the failure. Simon et al. (2000) proposed a more sophisticated bank stability and toe 

erosion model, which considers wedge-shaped bank failures with several distinct bank 

material layers and user defined bank geometry. This model is able to incorporate root 

reinforcement and surcharge effects of six vegetation species, including willows, grasses and 

large trees, and simulate saturated and unsaturated soil strength considering the effect of pore-

water pressure. 

 

 

NUMERICAL METHODS 
 

Discretization of Governing Equations 

 

The flow and sediment transport equations are of the convection-diffusion type. The 

numerical methods often used to discretize these equations include finite difference method, 

finite volume method, finite element method, and finite analytical method. The diffusion 

terms are usually discretized with the central difference scheme. However, the convection 

terms have to be discretized with an upwind scheme. The simplest one is the first-order 

upwind scheme, which is very stable but has strong numerical diffusion. The often adopted 

numerical techniques with upwind schemes and acceptable numerical diffusion include the 

hybrid upwind/central difference scheme, exponential difference scheme (Spalding, 1972), 

finite analytical scheme, HLPA (hybrid linear/parabolic approximation) scheme (Zhu, 1991), 

and upwind interpolation scheme (Wang and Hu, 1992). This group of schemes usually has 

second-order accuracy or less. Some high-order upwind schemes, such as QUICK scheme 

(Leonard, 1979), have higher than second-order accuracy, but may encounter numerical 

oscillations. Limiters have been developed to control the potential numerical oscillations 

caused by these high-order upwind schemes. 

For unsteady problems, the time derivative terms can be discretized by using either an 

explicit or an implicit scheme. The explicit scheme results in simple algebraic equations and 

computer program and can be easily parallelized. However, the time step in the explicit 

scheme is usually limited by the CFL condition. The implicit scheme allows a larger time 

step. The overall efficiency of the implicit solution procedure depends on what kind of 

iteration solver is used. This will be discussed in the next section. 
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Iterative Solution of Algebraic Equations  

 

Because the hydrodynamic problems are nonlinear, iterative solution methods are often 

used, especially for multidimensional problems. The simplest iteration methods are Jacobi 

method and Gauss-Seidel method. However, the convergence speed of these two methods is 

usually slow. To speed up the convergence, the Thomas algorithm and the Alternating 

Direction Implicit (ADI) iterative method have been widely used. Another iteration method of 

even faster convergence is the Strongly Implicit Procedure (SIP) proposed by Stone (1968). 

The idea is to approximately factorize the algebraic equations into two subsystems with a 

lower triangular matrix and an upper triangular matrix, and then solve the two subsystems 

separately by a direct method. Other iteration methods include Newton’s method, Conjugate 

Gradient method, Biconjugate Gradients method, GMRES, multigrid method, etc. In addition, 

the relaxation method is often adopted to enhance the efficiency of iteration. Over- and under-

relaxation methods can accelerate or slow down the convergence speed, but for nonlinear 

systems, such as hydrodynamic equations, under-relaxation is more often used.  

 

Numerical Solutions of Free Surface Flow 

 

For 1-D steady or quasi-steady flow model, the governing equation is the energy 

equation, which can be solved by the standard step method. For 1-D unsteady flow model, the 

most widely used numerical scheme is Preismann’s four-point implicit scheme. In a single 

channel or in a dendritic channel network, the resulting algebraic equations can be solved by 

applying the Thomas algorithm. For a looped channel network, the method proposed by 

Cunge et al. (1980) is suggested. The Preissman’s scheme may encounter instability in the 

case of transcritical flow. Therefore, it is usually limited to subcritical flows. For the flow 

mixed with subcritical and supercritical regimes, the approximate Riemann solvers and TVD 

schemes are often used (Toro, 2001).  

In the depth-averaged 2-D shallow water equations, Equations (11)-(13), the water depth 

appears in the continuity equation, providing a strong linkage between velocity and pressure 

(water level). Usually, upwind schemes are needed to discretize the convection terms in the 

momentum equations and even the spatial derivative terms in the continuity equations (i.e., 

upwinding flux). When the central difference scheme is used to discretize these terms, 

artificial dissipations or TVD limiters are often used to suppress the numerical oscillations. 

Some solution methods for the Navier-Stokes equations can be used for the 2-D shallow 

water equations. For example, the Rhie and Chow’s (1983) momentum interpolation 

technique on non-staggered grid (Wu, 2004) and the correction-type methods on staggered or 

partially staggered grids (Jia and Wang, 1999) have been adopted to solve Equations (11)–

(13).  

In the full 3-D Navier-Stokes equations, Equations (1) and (2), the momentum equations 

link the velocity to the pressure gradient, but the continuity equation does not directly link to 

the pressure and is just an additional constraint on the velocity field. Owing to such a weak 

linkage, the convergence and stability of a numerical solution of the Navier-Stokes equations 

depend largely on how the pressure gradient and velocity in these equations are evaluated. 

Storing the variables at the geometric center of the control volume coupled with a linear 
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interpolation for inter-nodal variation usually leads to non-physical node-to-node oscillations. 

One approach to avoid such numerical oscillations is to use the staggered grid adopted in the 

MAC method, the projection method, and the SIMPLE algorithm. Another approach is to use 

the momentum interpolation technique proposed by Rhie and Chow (1983) based on the 

collocated (non-staggered) grid (Wu et al., 2000a).  

In 3-D simulations of river flow, the computational domain is movable due to the free-

surface and bed-surface variations. One approach to handle this problem is ignoring the free-

surface variation and treating the free-surface as a rigid lid boundary. The location of the rigid 

lid can be estimated by a 1-D or 2-D model. This approach is simple but only applicable to a 

short reach where the water surface elevation varies gently. Another approach is the volume-

tracking method, which uses a fixed grid, and defines the water surface profile through the 

volume of fluid at each grid cell.  The MAC and VOF algorithms (Hirt and Nichols, 1981) are 

examples of this group. The third approach is the surface-tracking method, which uses the 

moving grid that follows the free-surface elevation change. At least one grid line is along the 

free surface so that the surface shape is approximately matched. In the surface-tracking 

method, the location of water surface is usually determined by the free-surface kinematic 

condition given by Equation (6), the depth-integrated continuity equation, Equation (11), or 

the 2-D Poisson equation derived by Wu et al. (2000a) from the 2-D depth-averaged 

momentum equations. 

In the 3-D shallow water equations, Equations (3)–(5), the pressure (water level) field 

becomes a 2-D quantity, but the weak linkage between the pressure and velocity still exists. 

Therefore, most of the current 3-D shallow water flow models adopt the staggered grid. 

Taking advantage of the 2-D feature of the pressure, Sheng (1983) and others suggested the 

splitting of internal module and external module. The external module is the depth-averaged 

2-D model, which handles the fast barotropic dynamics and computes the water level field. 

The internal module handles the slower baroclinic vertical flow structure by solving the 3-D 

equations. Casulli and Cheng (1992) proposed an algorithm that uses an implicit scheme in 

the vertical direction and a semi-implicit scheme in the horizontal direction. They derived a 

discrete 2-D Poisson equation to determine the water level. Wu and Lin (2011) developed an 

implicit finite-volume method to solve Equations (3)–(5) by using the SIMPLEC algorithm 

and the Rhie and Chow’s (1983) momentum interpolation technique to handle the coupling of 

velocity and water level on a non-staggered quadtree rectangular mesh. 

 

Numerical Solutions of Sediment Transport 

 

Although the physical interactions between the water and sediment always exist, the 

majority of the early sediment transport models have decoupled the flow and sediment 

calculations. Recent research has found that the coupled model is more stable and more 

accurate in case of strong sediment transport (Holly and Rahuel, 1990; Cao et al., 2002). 

However, the nonlinearity of flow problem may reduce the efficiency of solving the flow and 

sediment transport equations simultaneously. In addition, the sediment in the vast majority of 

rivers has very low concentration, and the time scales of flow and channel morphodynamic 

processes can be significantly different, especially in the case where bed load is dominant. 

Therefore, fully coupling the flow and sediment transport are usually not cost-effective. Wu 

et al. (2004) and Wu (2004) adopted a ―semi-coupling‖ procedure, in which the flow 

calculation is decoupled from sediment calculation, but the three components of the sediment 
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transport module: sediment transport, bed change, and bed material sorting are solved in a 

coupled fashion. This semi-coupling procedure has been found to be very stable and efficient 

computationally.  

 

 

APPLICATION EXAMPLES 
 

Three representative examples are presented to highlight the important capabilities of the 

NEST model. The first case is the application of the depth-averaged NEST model in the 

Lower Yellow River. The second case shows application of the depth-averaged 2-D model 

enhanced with dispersion terms for the sediment transport in a curved channel. The third case 

is calculation of local scour near bridge piers using a 3-D model with the sediment 

entrainment function considering the effects of local flow features. More examples can be 

found in Wu (2007) and other relevant references. 

 

Case 1: Sediment Transport in the Lower Yellow River 

 

Wu et al. (2006) simulated the flow and sediment transport in the lower Yellow River 

during the 1982 flood. The computational domain was the 103 km long reach between the 

Huayuankou and Jiahetan gauge stations. The Huayuankou station, located 259 km 

downstream of the Sanmenxia Dam, was set as the inlet. The computational mesh consisted 

of 201 and 21 points in the longitudinal and transverse directions, respectively, shown in 

Figure 3. The measured time series of flow discharge and sediment concentration at 

Huayuankou, shown in Figure 4(a), were used as inflow boundary conditions, while the 

measured time series of water stage at Jiahetan was used as the outlet boundary condition. 

The peak flow discharge of this flood at Huayuankou was 15,300 m
3
/s, and the peak sediment 

concentration was 66.6 kg/m
3
. The sediment was non-uniform, with sizes ranging from 0.002 

to 0.18 mm. Five size classes were used to represent the non-uniform sediment mixture. The 

Manning roughness coefficient was between 0.009 and 0.015, with bigger values for the 

rising stage and smaller values for the falling stage of the flood. The computational period 

was from July 30 to August 11, 1982. The time step was 15 minutes. The adaptation 

coefficient   was 0.25. The effect of sediment concentration was considered by modifying 

the settling velocity of sediment particles according to the Richardson-Zaki (1954) formula.  

 

 

Figure 3. Computational mesh between Huayuankou and Jiahetan 

 

Figure 4(b) shows the measured and simulated flow discharges and sediment 

concentrations at Jiahetan (outlet). The simulated results generally agree well with the 
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measured data. Because of deposition, the simulated peak sediment concentration at Jiahetan 

corresponding to the peak flow decreased to 45.57 kg/m
3
, compared to the measured value of 

40.7 kg/m
3
. The time delay between peak flow and sediment concentration was 34.5 and 37.5 

hr at the inlet and outlet, respectively, and exhibited an increasing trend downstream. Figure 5 

shows the simulated flow field corresponding to a flow discharge of 4,000 m
3
/s at 

Huayuankou. The vectors represent the flow direction and magnitude, while the contours 

denote the flow depth. It can be seen that the main flow meandered in the river and interacted 

with the flow in floodplains.  

 

 
 

Figure 4. Flow discharges and sediment concentrations at (a) Huayuankou (Inlet) and (b) 

Jiahetan (Outlet) (Wu et al., 2006)  

 

 

Figure 5. Simulated flow field at flow discharge of 4,000 m
3
s

-1
 at Huayuankou (Wu et al., 

2006) 

 

Case 2. Sediment Transport in a Channel Bend 

 

Wu and Wang (2004) simulated the sediment transport and morphological change in an 

180
o
 bend under unsteady flow conditions, which were experimentally investigated by Yen 
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and Lee (1995). The width of the flume was 1 m, the radius of curvature at the centerline was 

4 m, and the initial bed slope was 0.002. The flow hydrograph was triangular. The base flow 

discharge was 0.02 m
3
/s, and the base flow depth,

oh , was 0.0544 m. In the simulated case 

(run 4), the peak flow discharge was 0.053 m
3
/s, and the duration was 240 min. The peak of 

the hydrograph was set at the first third of its duration. The sediment was non-uniform and 

had a median diameter of 1.0 mm and a standard deviation of 2.5. The Manning roughness 

coefficient was given as 1/6

50 20d  in the simulation, with 
50d  being the median size of the bed 

material in the mixing layer. The two parameters in the helical flow intensity model, Equation 

(43), were set as 3.0t   and 1.0I  . The computational mesh in the bend reach consisted 

of 91 and 31 points in the longitudinal and transverse directions, respectively. The time step 

was 1 min. Figure 6 compares the measured and simulated bed change contours in the bend, 

and Figure 7 shows the lateral profiles of the bed changes at four cross-sections. The general 

patterns of the deeper channel along the outer wall and the point bar along the inner wall are 

reproduced well by the model. The calculated bed changes are in agreement with the 

measured data. Without considering the helical flow effect, one cannot obtain such reasonable 

results. 

 

 
Figure 6. (a) Measured and (b) Calculated Bed Changes Contours (Wu and Wang, 2004) 

 

 

Case 3: Local Scour around Bridge Piers 

 

Wu (2007) simulated local scour process at bridge piers using the 3-D flow and sediment 

transport model published by Wu et al. (2000a) with modifications considering the effects of 

local flow features on sediment transport, as explained in the previous section. The model 

adopts the standard k   turbulence model and uses the finite volume method on 

quadrilateral grid to discretize the governing equations. The computational mesh consisted of 

43 and 25 points in the transverse and vertical directions, respectively, and a suitable number 

of points in the longitudinal direction depending on the flume length. The plan view of the 

mesh around a cylindrical pier is shown in Figure 8. The vertical grid spacing was refined 

near the bed. The sediment transport capacity was determined using the van Rjin formula 

modified with Equation (51). The sediment adaptation length was determined using 

 min 0.4 , 7.3 oL t h , in which t  is the elapsed time in hours and 
oh  is the approach flow 

depth in meters. 
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Figure 7. Measured and calculated bed changes at four cross-sections (Wu and Wang, 2004) 

 

Figure 9 compares the simulated and measured scour holes at a cylindrical bridge pier for 

Yanmaz and Altinbilek’s (1991) run 3 with a pier diameter ( D ) of 6.7 cm, a sediment size of 

1.07 mm, a flow discharge of 30 l/s, and an approach flow depth of 0.135 m. The simulated 

scour depth contours in the hole agree well with the measured data. The simulation predicted 

deposition downstream of the scour hole, but the measurement lacked this information. Figure 

10 compares the simulated and measured deepest scour depths varying with time for Yanmaz 

and Altinbilek’s (1991) run 3, Ettema’s (1980) experiment with D = 0.24 m and d50 = 1.9 mm, 

and the run 7 (D = 0.91 m, d50 = 2.9 mm) of Sheppard et al. (2004). Durations ( et ) of these 

three runs were 5, 14.5, and 188 hr, respectively. Erosion was very intensive at first and then 

reduced gradually. The erosion processes were reproduced well by the numerical model.         

 

 
 

Figure 8. Computational mesh near a cylindrical pier (Plan View) 
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Figure 9. Measured and simulated scour depth contours (m) at a cylindrical pier (Yanmaz and 

Altinbilek’s Run 3 at 100 min) 

 

 

 
 

Figure 10. Temporal variation of the deepest scour depth at cylindrical piers 

 

 

CONCLUSION 
 

Under the assumption of low sediment concentration and slow bed change, the sediment-

laden flow can be described using a clear water flow model with a decoupled sediment 
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transport model. In a 3-D model, the flow is governed by the 3-D Reynolds-averaged Navier-

Stokes equations or their simplified form for the shallow water flow under hydrostatic 

pressure assumption. The suspended-load transport is governed by the traditional convection-

diffusion equation with a sediment settling term.  

By integrating the 3-D model equations over the flow depth (or cross-section), the depth-

averaged 2-D (or 1-D) flow and suspended-load transport equations are derived, in which 

dispersion terms appear due to the non-uniformity of flow velocity and suspended-load 

concentration along the depth. The dispersion terms are often combined with the turbulent 

stress terms by introducing the mixing coefficient or effective eddy viscosity and sediment 

diffusivity, or combined with the convection terms by introducing flow momentum and 

sediment flux correction factors, or evaluated using analytical models for the vertical profiles 

of secondary flow velocity and suspended-load concentration. The depth-averaged 

suspended-load transport equation has a source term due to exchange between suspended load 

and bed load (or bed material). It is modeled by relating the actual and capacity (equilibrium) 

near-bed sediment concentrations to the depth-averaged values via the adaptation coefficient 

 . In addition, the depth-averaged velocity of suspended load is found to be smaller than the 

depth-averaged flow velocity, and this lag is considered through introducing the correction 

factor 
s  in the storage term in the depth-averaged suspended-load transport equation. For 

fine sediments, 
s  is close to 1.0, but for coarse sediments 

s  is approximately between 0.4–

1.0 depending on the Rouse number and Chezy coefficient. 

The bed-load transport equation is derived by integrating the 3-D sediment transport 

equation over the bed-load layer. The equation has source terms to account for exchanges 

between suspended load and bed load and between bed load and bed material. By defining the 

bed change as contributions from bed load and suspended load, the bed-load transport 

equation is closed, in which sediment adaptation length L  and bed-load velocity 
bu  are the 

parameters to be modeled. The bed-load velocity is determined using an empirical formula. It 

usually is slower than flow velocity, so that the lag between bed-load and flow is taken into 

account in the model. The derived bed-load transport equation can be used in both 3-D and 

depth-averaged 2-D models. Laterally integrating it leads to the section-averaged 1-D bed-

load transport equation. 

The derived suspended-load and bed-load transport equations are the basic equations of 

the sediment transport model that separates moving sediments into suspended load and bed 

load. An alternative approach is to add the suspended-load and bed-load transport equations 

to derive the bed-material load (or total load) transport equation in the depth-averaged 2-D or 

1-D model. This bed-material load modeling approach solves one less differential equation 

for each sediment size class and is computationally more efficient than the suspended-load 

and bed-load separation approach. Moreover, the two parameters, adaptation coefficient   

and adaptation length L , in the separation method are combined in the bed-material load 

model into a single parameter, either as the adaptation coefficient t  or the adaptation length 

tL .  

Methods and guidance have been developed for evaluating sediment adaptation length 

and coefficient. Unfortunately, these parameters are empirical and depend on the flow and 

sediment conditions and domain geometric characteristics. The suspended-load adaptation 

coefficient   can be determined using several semi-empirical formulas, which are developed 



Non-Equilibrium Sediment Transport Modeling — Formulations and Closures 27 

with certain simplifications and assumptions and usually give values larger than 1.0 for  . In 

practice,   is found to have values less than 1.0 (mostly between 0.25-1.0) in 1-D models. 

The bed-load adaptation length 
bL  is related to scales of sediment transport and bed forms.  

Because   and 
bL  are affected by many complex factors, the most reliable way is to 

calibrate them using measured data for specific cases.      

The sediment transport capacity is another important parameter in the sediment transport 

model. It includes the depth-averaged capacity concentration of suspended load in the depth-

averaged 2-D and 1-D models, the near-bed capacity concentration of suspended load in the 

3-D model, and the capacity transport rate of bed load in all 1-D, 2-D and 3-D models. 

Dozens of empirical formulas are available in the literature to determine the sediment 

transport capacity. Recommendations are provided for selection of these formulas. However, 

calibration using measurement data is always the most reliable way.  

In the case of non-uniform sediment transport, the sediment mixture is divided into 

multiple size classes and the aforementioned transport equations are applied to each sediment 

size class. The hiding and exposure mechanism in the non-uniform bed materials is taken into 

account through the correction factors introduced in the sediment incipient motion and 

sediment transport capacity formulas. The bed material is often divided into multiple layers in 

depth, and the mixing layer at the bed surface is facilitated to exchange with moving 

sediments. The sediment sorting equation in the mixing layer is derived according to mass 

conservation. 

Additionally, turbulence closure, bed roughness, dispersion in curved channel, sediment 

transport over steep slope, sediment entrainment near in-stream structures, and bank erosion 

are briefly discussed, to close and enhance the flow and sediment transport model. The 

numerical methods often used to solve the flow and sediment transport equations are briefly 

summarized, including numerical discretization methods, iterative solution of algebraic 

equations, coupling of velocity and pressure in the flow equations, and decoupling and 

coupling of flow and sediment calculations.  

Three test cases are selected to demonstrate the capabilities of the NEST model to take 

into account the lag of flow and sediment transport in an alluvial river reach, the effects of 

helical flow on the main flow, sediment transport and channel morphology in a channel bend 

by incorporating the momentum and flux dispersions, and the local scour near a bridge pier 

by enhancing the formula of sediment entrainment affected by the 3-D local flow features. 

More cases can be found in the relevant publications.            
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