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Abstract: Computer models based on the two-dimensional (2-D) elliptic mild-slope equation are nowadays routinely
used in harbor engineering applications. However, structures like floating breakwaters and docks, which are often en-
countered in the modeling domain, render the problem for locally three-dimensional model and hence are problematic
to incorporate in a 2-D model. Tsay and Liu (Applied Ocean Research. 1983. Vol 5(1): 30–37) proposed a highly sim-
plified but approximate approach that does not violate the overall two dimensionality of the problem. The validity of
their approach is examined in detail, and it is found that although their approximation provides results with the correct
trend, the actual solutions deviate considerably from the theoretical solutions. We have developed correction factors that
may be used to produce more reliable results using the framework of Tsay and Liu. Application of the resulting
method to a harbor in Alaska shows that docks in the harbor distort the wave field considerably and create a reflective
pattern that has the potential to affect navigation safety in some areas. A by-product of this paper consists of plots of
transmission coefficients for waves propagating past rectangular and cylindrical floating objects of infinite extent for a
wide range of conditions encountered in practice. Such transmission coefficients are at present readily available in the
published literature for selected cases only.
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Résumé : Les modèles informatiques basés sur l’équation de pente douce elliptique à deux dimensions sont couram-
ment utilisés dans l’ingénierie des ports. Cependant, les structures comme les brise-lames et les quais flottants, que
l’on rencontre souvent en modélisation, rendent le problème tridimensionnel localement et sont donc difficiles à incor-
porer dans un modèle bidimensionnel. Tsay et Liu (Applied Ocean Research. 1983. Vol 5(1): 30–37) ont proposé une
approche extrêmement simplifiée mais approximative qui n’enfreint pas la bidimensionnalité globale du problème. La
validité de leur approche est examinée en détail et il a été découvert que, bien que leur approximation donne des résul-
tats ayant la tendance appropriée, les solutions réelles sont considérablement différentes des solutions théoriques. Nous
avons développé des facteurs de correction qui peuvent être utilisés pour obtenir des résultats plus fiables en utilisant le
cadre de Tsay et Liu. L’application de la méthode résultante à un port en Alaska montre que les quais dans le port dé-
forment considérablement le champ de vague et créent un patron réflectif qui pourrait affecter la sécurité de la naviga-
tion dans certaines zones. Un dérivé du présent article consiste en des tracés de coefficients de transmission pour les
vagues se propageant au delà d’objets rectangulaires et cylindriques d’étendue infinie pour une large gamme de condi-
tions rencontrées dans la pratique. De tels coefficients de transmission sont présentement facilement disponibles dans la
littérature publiée, mais uniquement pour certains cas.

Mots clés : vague, modèle, pente douce, équation, brise-lames flottant, quai, marina, port.
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1. Introduction

In projects involving harbor and (or) marina design or
modifications, engineers often use computational models
based on the elliptic mild-slope wave equation to estimate
the requisite wave properties. This equation can be used to
simulate the effects of wave refraction, diffraction, and re-
flections in regions with arbitrary geometry. Development of
several robust codes to solve this equation in recent years
and their integration with sophisticated finite element grid
generators and graphical user interfaces has resulted in their
use in many practical harbor problems. These include stud-
ies of Ste. Therese de Gaspe Harbor, Kahului Harbor, Morro
Bay Harbor, Venice Lagoon, Los Angeles–Long Beach Har-
bor, Barbers Point Harbor, etc. (Tang et al. 1999; Thompson
and Demirbilek 2002; Thompson et al. 2002; Panchang and
Demirbilek 2001; Mattioli 1996; Kostense et al. 1988; Bova
et al. 2000; Zubier et al. 2003; and others). Well-known
models used by engineers include PHAROS, CGWAVE, and
EMS.

The governing equation for these mild-slope wave models is

[1] ∇ ∇ + =( ) ( )CC k CCgg Φ Φ2 0

where, for a given wave frequency σ, Φ( , )x y is the complex
wave potential from which the wave height and phase may
be estimated, C is the wave velocity, Cg is the group veloc-
ity, k is the wave number. (The last three quantities are pre-
specified on the basis of the local depth h(x, y) and given
wave frequency.) Equation [1], which finds wide applicabil-
ity in harbor studies because of its validity for both long and
short waves, is a two-dimensional (2-D), vertically inte-
grated form of the time-harmonic complex Laplace equation

[2] ∇ =2 0φ( , , )x y z

where

[3] φ( , , ) ( ) ( , )x y z f z x y= Φ

and
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The vertically integrated form [1], together with the assump-
tion [3], has been demonstrated to be valid for |∇h|/kh << 1,
a criterion that is usually met in practice. Being elliptic, the
equation represents a boundary-value problem, which can
accommodate internal non-homogeneities and boundaries.
Hence, it forms a well-accepted basis for performing wave
simulations in regions with arbitrarily shaped (manmade or
natural) boundaries and arbitrary depth variations without
limitations on the angle of wave incidence or the degree and
direction of wave reflection and scattering that can be mod-
elled.

One problem frequently encountered by engineers when
using models based on eq. [1] pertains to the presence of
floating structures in the modeling domain (e.g., floating
breakwaters or docks in marinas). These structures of course
violate the free-surface requirement of eq. [1]. Models for
solving the full three-dimensional (3-D) problem (eq. [3])
are available (e.g., Yue et al. 1976; and later versions); how-
ever, these models assume a flat ocean bottom of infinite ex-

tent around the structure while solving for the wave patterns.
No models are available at present for solving the full 3-D
problem on the length scale of typical harbor with all its
geometric variations, as the effort is prohibitively demand-
ing on computer resources (especially for short waves).

To address this situation, Ohyama and Tsuchida (1997)
developed a procedure for interfacing a locally 3-D model
(near the floating structure) with a two-dimensional (2-D)
model in the rest of the harbor domain. While the 2-D sub-
domain has a hyperbolic vertical variation (as in eq. [3]), the
vertical variation in the 3-D sub-domain was described with
a series of cosine functions. Although rigorous, the proce-
dure for coupling involves practical difficulties that are too
formidable for general and routine implementation. In fact,
Koutandos et al. (2004) even now have had to limit their
work only to the x–z plane while using a similar approach.
In this paper, therefore, we explore in detail an approximate
method suggested by Tsay and Liu (1983) (TL) for tackling
floating structures in the context of 2-D harbor wave models.
This approach, which we refer to as the TL approximation
for convenience, merely calls for a suitable modification to
the second term on the left-hand side of eq. [1]; Tsay and
Liu (1983) examined suppressing this term. As a conse-
quence, the method is extremely simple to implement with
existing finite element models. A model grid is first gener-
ated as usual with no regard to the floating structure, then
grid elements covering the floating structure (in plan view)
are selected, they are assigned a depth value equal to the un-
der-keel clearance, and the coefficient of the second term in
eq. [1] is set to zero for these elements. Clearly, this is an ad
hoc method intended for convenience in engineering prac-
tice, and although Tsay and Liu (1983) provided heuristic ar-
guments in support of this approach, their testing of this
procedure was rather limited. Tsay and Liu (1983) justified
their approach on the grounds that under the structure, the
basic continuity equation holds, while outside the area of the
structure, the wave equation (eq. [2]) holds. In reality, there
is wave motion under the structure also.

In view of the potential efficiency of this approach (vis-à-
vis the full 3-D solutions), we undertake a detailed examina-
tion of the limits of this approximation, with the goal of de-
termining the inherent errors for a wide spectrum of
commonly encountered parameters such as the relative width
ka and the relative submergence d/h (where a is the charac-
teristic structure size and d is the draft). This is described in
Sect. 2. Through numerical experiments, we have attempted
to develop modifications to the TL approximation that can
minimize its errors (Sect. 3), thus enhancing the reliability
of this approximation for practical engineering problems. In
Sect. 4, we validate the modified TL approximation using
three independent tests for which theoretical solutions and
(or) data are available. A by-product of this paper consists of
plots of transmission coefficients for waves passing an infi-
nitely long cylinder and a rectangular floating structure;
while these problems have been solved analytically (to some
extent) in the past, complex code must be developed to actu-
ally calculate these coefficients. In fact, the Coastal Engi-
neering Manual (U.S. Army Corps of Engineers, 2002)
provides these coefficients only for a specific geometry with
regards to a rectangular floating breakwater, and Martin and
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Dixon (1983) provide these values only for a specific cylin-
der geometry in deep water. We provide plots for the entire
range of kh, ka, and d/h values likely to be encountered in
practice. In Sect. 5, we provide a demonstration of the use of
the proposed method, along with a 2-D finite element wave
model, in Douglas Harbor (Alaska). The effects of incorpo-
rating the floating docks in the model are quite distinct and
suggest that the presence of the docks can create reflections
that could adversely impact small-craft operation in some ar-
eas.

2. Problem formulation

We consider the problem of estimating the transmission
and reflection coefficients associated with the propagation of
a monochromatic wave on a flat sea bed past an infinitely
long, fixed, floating structure of rectangular cross section
(Fig. 1). An incident wave φ i= Ai exp(ikx)f(z) is specified at
the left boundary HA. (Here, we have set the incident ampli-
tude Ai = 1). The left and right boundaries are placed far
enough away from the structure so that the vertical distribu-
tion for the components propagating away from the structure
may be assumed to be f(z). Along the left boundary HA, the
combination of the incident wave and an unknown reflected
wave of the form φ r = AiR exp[–i(kx + β)]f(z) (where R is the
reflection coefficient and β is the phase shift on the upwave
side) gives rise to the following boundary condition (Panchang
et al. 1991):

[4]
∂
∂

= −φ φ
x

ik f z[ ( ) ]2

Along the right boundary CB, the boundary condition as-
sociated with an unknown transmitted wave (of the form T
exp(i(kx + δ))f(z)) may be written as

[5]
∂
∂

=φ φ
x

ik

where T is the amplitude of the transmitted wave and δ is the
phase shift.

Along the free surface HG and DC, we have

[6]
∂
∂

=φ φ
x

g( / )σ2

and, finally, along the seabed AB and the boundaries of the
structure GF, FE, and DE, we set the normal derivative equal
to zero.

A solution to the Laplace equation in the x–z plane, sub-
ject to the above boundary conditions, is obtained using fi-
nite differences. The resulting discretized system of linear
equations is solved by the method of conjugate gradients
(Panchang et al. 1991). We used domains that were typically
at least 7 wavelengths long and at least 17 layers in the verti-
cal direction. We also used ∆ ∆x z= , thus ensuring a very
high level of resolution and accuracy in the solutions.

To obtain a solution for the TL approximation, we rewrite
the governing eq. [1] as

[7]
∂ ∂ ∂

∂
+ =( / )p x

x
q

Φ Φ 0

where p(x) = CCg for all x, q(x) = k2CCg for x < x1 and x >
x2, and q(x) = 0 for x1 < x < x2. Note that to determine p(x)
when x1 < x < x2, Tsay and Liu (1983) recommend using the
under-keel depth d1 = h – d. The boundary conditions for
eq. [7] are similar to eqs. [4] and [5], with the exception that
φ is replaced by Φ and f(z) is deleted. A solution to eq. [7]
may easily be obtained by the finite difference method, since
discretization leads to a tridiagonal system of linear equa-
tions that can be solved by the Thomas algorithm.

3. Comparison of theoretical results with
the Tsay–Liu approximation

A total of 864 simulations were performed to cover a
wide range of conditions encountered in practice. These in-
cluded kh = 0.1, 0.25 (shallow water), kh = 0.4, 0.8, 1.2, 2,
2.8 (intermediate water), and kh = 4, 8 (deep water). The
size of the structure was described by 0 < ka < 5, and its im-
mersion by d/h = 0.25, 0.5, and 0.75 corresponding, respec-
tively, to shallow, intermediate, and deep draft. The code for
solving the Laplace equation was checked by comparing its
results against the analytical solution presented by Drimer et
al. (1992) for one case. Our solutions were practically indis-
tinguishable from those in Fig. 2 of their paper.

For brevity, we show (in Fig. 2) the computed transmis-
sion coefficients only for kh = 0.25, 0.8, 2.8, and 4 as repre-
sentative of shallow (kh = 0.25), intermediate (kh = 0.8 and
2.8), and deep (kh = 4) water. Also, only the curves for d/h =
0.25 and 0.75 are shown; the curve for d/h = 0.5 lies in the
middle. If the reflection coefficient is desired, it may be
computed as R2 = 1 – T2. These curves may be used by engi-
neers to supplement the single curve provided by the
Coastal Engineering Manual (CEM) by the Army Corps of
Engineers (U.S. Army Corps of Engineers 2002), which is
applicable only for 0 < ka < 2.0 and d/h = 0.14; or by
Drimer et al. (1992), whose Fig. 2 is applicable only for
a/h = 1 and d/h = 0.7 in water of finite depth.

The results of the TL approximation are plotted in Fig. 2.
They appear to match the theoretical results very well in
shallow water, but the degree of mismatch is high for inter-
mediate and deep water. However, the TL approximation
shows the same trend as the theoretical solutions. This sug-
gests that a simple ad hoc adjustment to the method may
yield results closer to the theoretical solutions. While several
ways of doing this may be considered, we examined the ap-
proach of retaining q = 0 (as per the original proposal of
Tsay and Liu (1983)) but adjusting p appropriately. While
Tsay and Liu (1983) calculated p based on the under-keel
clearance d1, we attempted a simple modification of the
form αd1, where α is a correction factor. A large number of
simulations were performed using trial values of α until the
results of the “modified TL method” matched the theoretical
solutions within 2%. The correction factors so obtained are
shown in Fig. 3.

For shallow water and shallow draft, α is roughly equal to
unity (as expected). But for deep draft, the TL approxima-
tion needs to be modified by α ≈ 0.7. For intermediate and
deep water, α is not constant but shows an increasing trend
with ka. In very deep water, the mismatch is large. Note that
for short waves (relative to submergence), T → 0. This re-

© 2005 NRC Canada

1084 Can. J. Civ. Eng. Vol. 32, 2005



© 2005 NRC Canada

Li et al. 1085

Fig. 1. Wave transmission past a rectangular floating structure of infinite extent.

Fig. 2. Modelled transmission coefficients for wave transmission past a rectangular floating structure of infinite extent: (a) kh = 0.25,
(b) kh = 0.8, (c) kh = 2.8, and (d) kh = 4.



quires us to create a high level of wave blockage, which can
be accomplished by α → 0 with the modified TL approxima-
tion, as seen in Fig. 3 (for kh = 4). Of course this result
would not hold, if d/h were much smaller than the smallest
value investigated here (which is typical in engineering
practice).

Plots similar to those in Fig. 3 were produced for all cases
examined. The best-fit curve for these had the form of α =
A ka Bln( ) + . The corresponding A and B are given in Fig. 4.
For kh < 0.1 and kh > 4, we recommend using the A and B
values corresponding to these thresholds. Results of the
modified TL approximation obtained with A and B values
selected from Fig. 4 are also plotted in Fig. 2. As expected,
the results are close to theoretical solutions.

4. Validation

To test the validity of the modifications proposed above
for situations other than the ones from which they were de-
rived, the modified TL approximation was applied to the
cases for which laboratory data or analytical solutions are
available. These validation tests are described below:

Square floating breakwater
Koutandos et al. (2004) have presented data pertaining to

transmission coefficients for waves passing a fixed, infinitely
long, floating breakwater of rectangular cross section with
d/h = 0.5 and a/h = 0.25. Although this case is similar to
those described in Sects. 2 and 3, the laboratory data serve
as an independent test of the modified TL approximation.
This case pertains to wave propagation in intermediate
depths. The results of the original TL approximation using
the under-keel depth to calculate p are compared in Fig. 5
with the laboratory data. There is considerable mismatch,
which seems to be increasing with ka. On the other hand, the
results of modified TL approximation, obtained by using A
and B values from Fig. 4, show good agreement with the
measured transmission coefficients.

Infinitely long cylinders
Ijima et al. (1976) calculated transmission coefficients for

waves passing one infinitely long cylinder and two in-line
cylinders (Fig. 6) by solving the Laplace equation via the
boundary element method. Their theoretical results, along
with data they collected for these cases, are shown in Fig. 7.
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Fig. 3. Correction factors and best-fit curves: (a) kh = 0.25, (b) kh = 0.8, (c) kh = 2.8, and (d) kh = 4.



These tests pertained to the intermediate water depth regime.
While using the modified TL approximation for these simu-
lations, the under-keel clearance d1 changes at every grid
point. Although a variable α can be used, here an approxi-
mate value of α was estimated based on an equivalent rect-
angular immersed area of the same width as the cylinder.
Figure 7 indicates that the results of the modified TL ap-
proximation show much smaller discrepancies than those of

original TL approximation, when compared with both the
theoretical results and the measured data provided by Ijima
et al. (1976).

For the case of similar cylinders in deep water, Martin and
Dixon (1983) developed an analytical method to calculate
the transmission coefficient and presented them in the form
of a table for the practitioner’s benefit. By way of validation,
we performed numerical simulations in the deep water re-
gime for ka > 3. Smaller values of ka lead to smaller values
of d/h ratios for a cylinder with its centreline corresponding
to the water surface, as in Fig. 6. The results, shown in
Fig. 8, again indicate that the modified TL approximation is
a significant improvement compared with the original ap-
proximation.
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Fig. 4. Values of A and B for determining α.

Fig. 5. Wave height comparison with data presented in
Koutandos et al. (2004).

Fig. 6. Wave transmission past floating cylinder(s) of infinite ex-
tent. (a = 0.16 m; h = 0.4 m.)



Since these simulations of selected cases pertaining to in-
finitely long cylinders show that the modified TL approxi-
mation is able to reproduce the theoretical results reasonably
well, we use it as a surrogate for the Laplace equation to de-
velop curves for transmission coefficients in shallow, inter-
mediate and deep water depth. These curves, provided in
Fig. 9, may be used by the engineer to supplement the table
provided by Martin and Dixon (1983) for deep water appli-
cations.

Floating dock of square planform
Yue et al. (1976) have presented complete solutions of the

full 3-D Laplace equation for wave scattering by a floating
dock of square planform situated in water of constant depth
(Fig. 10). Note that this is not an x–z problem anymore, and the
TL approximations cannot be used with the one-dimensional
eq. [7]. Rather, they are used with two-dimensional eq. [1] to
which Bessel–Fourier functions (e.g., Mei 1983, Xu et al.

1996) are applied as open ocean boundary conditions. Equa-
tion [1] is then solved through the use of a finite element
grid developed with the graphical interface contained in the
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Fig. 7. Wave height comparison. Theoretical solutions and data from Ijima et al. (1976): (a) one cylinder and (b) two cylinders.

Fig. 8. Wave transmission coefficients for wave propagation past
a cylinder in deep water.

Fig. 9. Modelled transmission coefficients for wave transmission
past a cylindrical floating structure of infinite extent.

Fig. 10. Wave propagation past a rectangular floating dock in
circular domain of constant depth. (x-axis corresponds to θ = 0).



Surface Water Modeling System (Zundel et al. 1998). While
developing the 2-D grid the area covering the dock is also
filled with finite elements; each node is assigned a depth
equal to the local under-keel clearance times the correction
factor α and q is set equal to zero. The parameters in the
simulations are a = h = 1 m, d/h = 0.5, and ka = 1, 2, 3 (cor-
responding to the cases described by Tsay and Liu (1983)).
The results are shown in the form of amplification factors
along the periphery of the dock in Fig. 11. Although the cor-
rection factor α was developed in Sect. 3 using infinitely
long floating structures, its use in the present multidirec-
tional scattering problem produces results close to the full 3-
D results for a wide range of ka values.

5. Practical application

In view of the satisfactory results obtained with the modi-
fied TL approximation, it is used in conjunction with a fre-
quently used harbor wave modeling package called CGWAVE
(e.g., Zubier et al. 2003; Demirbilek and Panchang 1998;
Tang et al. 1999; Thompson et al. 2002, etc.) to demonstrate

the effect of floating docks in a marina. The application per-
tains to ongoing design studies for the expansion of Douglas
Harbor, situated on the west side of the Gastineau Channel
in Alaska. The channel is approximately 2 km wide, and one
angle of wave incidence that is of interest to design consid-
erations is normal incidence across the channel.

The depth in the harbor, which is approximately 325 m by
165 m in size, varies from approximately 9.5 m to very
small values at the coastal boundary. The location of this
boundary fluctuates because of a high tidal regime; only one
tidal condition is described here. A part of the bathymetry is
shown in Fig. 12. For discussion purposes we consider linear
wave conditions with input period as 4.4 s and height as
2 m, although design wind wave conditions at the site may
be different. A triangular finite element grid with 14 points
per wavelength was constructed; this resulted in approxi-
mately 180 000 nodes and 355 000 elements. The coastal
boundary was assigned zero reflection. The open boundary,
denoted by the semicircle in Figs. 13 and 14, was treated as
per the mathematical formulation developed by Panchang et
al. (2000). A depth-limited breaking criterion was applied to
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Fig. 11. Wave height comparison. 3d solutions from Yue et al. (1976) : (a) ka = 1, (b) ka = 2, and (c) ka = 3.



the solution of eq. [1], although other breaking models could
also be used (Zhao et al. 2001).

The results in Fig. 13, depicting modeled phases and wave
heights for the case with no docks, show penetration of
waves into the harbor and a nearly classical diffraction ef-

fect. The maximum wave height near the harbor entrance
(near A) is approximately 2.6 m, representing an amplifica-
tion of 1.3. However, the uniform phase pattern in the har-
bor is considerably distorted when 5 docks (of widths
varying between 1.8 m and 4.8 m) are inserted in the do-
main. (The docks are assumed to be fixed and the wave field
is assumed to be unaffected by the tethering mechanisms.)
The simulation with the docks is accomplished by simply
highlighting the grids representing the dock and modifying
the depth (using the appropriate correction factor α to
change the under-keel depth d1 to αd1); also, the grid resolu-
tion in the vicinity of the docks must be increased because
the water depths are now smaller. This is not difficult to im-
plement since most grid generators allow automatic refine-
ment in selected areas. The resulting simulation (Fig. 14)
shows three differences with Fig. 13. First, the presence of
the docks leads to considerable attenuation of the waves on
the lee side of the dock marked PQ in Fig. 12. Second, re-
flections within the dock area, manifested by the distorted
phase pattern and considerable wave height variability, are
seen in the model results. For example, the waves are as
high as 3.2 m on the upwave side of the dock PQ (near P);
also, changes in the range of 2.6–0.2 m in the region be-

© 2005 NRC Canada

1090 Can. J. Civ. Eng. Vol. 32, 2005

Fig. 12. Bathymetry for portion of Douglas Harbor modeling do-
main, containing five floating docks; depth in metres.

Fig. 13. Modelled phases and wave heights (metres) in Douglas
Harbor, with no docks.

Fig. 14. Modelled phases and wave heights (metres) in Douglas
Harbor, with docks.



tween RP and ST occur. This suggests that proper attention
must be paid to the appropriate location of the docks to
avoid undesirable motion of docked boats. Finally, and per-
haps most significantly, a reflective pattern (near B), created
largely by the dock RP, propagates upwave from the docks
into the area outside the harbor. As a result, considerably
larger wave heights occur near the harbor entrance (indi-
cated by darker patterns in the gray-scale plots); the maxi-
mum value is approximately 3.9 m (near B), representing
(nearly) standing waves and an increase of almost 50% rela-
tive to the case without the docks. This increase is consistent
with the amplification on the upstream side seen in the theo-
retical results in Fig. 11. The standing wave pattern in the
entrance channel area may be of some concern from a navi-
gation perspective, especially for small craft using such har-
bors. At this time the US Army Corps of Engineers (Alaska
District Office) is in the process of designing a re-
configured entrance channel at Douglas Harbor that includes
a new wave barrier on the north side and an extension of the
existing breakwater on the south side (not shown).

It is noted that these results are shown only by way of
demonstration of the use of the modified TL approximation;
the effect of mechanisms not included here such as frictional
damping and wave-wave interaction (e.g., Panchang and
Demirbilek 2001) may lead to different solutions.

6. Summary and conclusions

The approximate method proposed by Tsay and Liu (1983)
to incorporate floating structures in a 2-D elliptic harbor
wave model is extremely convenient for the engineers to
implement with currently available harbor wave modeling
technology; however, it produces results that deviate consid-
erably from the solution of the Laplace equation. By per-
forming a large number of tests that compared solutions of
the TL approximation with those of the Laplace equation, a
simple modification to the original TL approximation was
developed. This involves adjusting the under-keel depth by a
factor α = Aln(ka) + B, where A and B are given in Fig. 4 for
different values of relative submergence. The modified TL
approximation yields improved results, when compared with
both laboratory data and theoretical results, for a wide range
of conditions. By using practical demonstration, the modified
TL approximation is applied to Douglas Harbor (Alaska). For
the case examined, the floating docks in the harbor are shown
to considerably attenuate the wave heights near some of the
harbor coastlines relative to currently used models (that do
not contain the facility to model the effects of the floating
structures). However, the docks are shown to create a reflec-
tive pattern in the dock area and another reflective pattern
that propagates up into the area of the harbor entrance and
(or) navigation channels; these reflections, in principle, can
be detrimental to transiting or docked vessels unless the
dock layout is properly designed.

In the future, we plan to attempt field validation of the
model enhancement described here. Many basic harbor wave
simulation models have been validated in the field (e.g.,
Panchang and Demirbilek 2001), but without the effects of
docks. The performance of the model under the influence of
irregular waves will also be examined.
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List of symbols

a characteristic structure size
Ai incident amplitude
C wave velocity

Cg wave group velocity
d draft of floating structure

d/h relative submergence of floating structure
g acceleration due to gravity
h water depth
k wave number

ka relative width of floating structure
p parameter defined as CCg
q parameter defined as K2CCg
R reflection coefficient
T amplitude of the transmitted wave
β phase shift of the reflected wave
δ phase shift of the transmitted wave
σ wave frequency
Φ 2-D complex wave potential
φ 3-D complex wave potential
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