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A new numerical method is developed to solve a set of two-dimensional Boussinesq 
water wave evolution equations over an unstructured grid. The governing mass and 
momentum conservation equations are discretized over an irregular triangular grid, with a 
staggered placement of the variables. The free surface elevation is defined at the centroid 
of the triangles, while the normal component of the velocity is defined at the mid-point of 
the triangle edges. The mass conservation equation is then integrated over a control 
volume defined over each triangle while the momentum equations are integrated over a 
control volume formed from two adjacent triangles. A modified Crank-Nicolson scheme 
is used to integrate the equations in time. Two numerical experiments are used to evaluate 
the conservation properties and accuracy of the numerical method: solitary wave 
propagation in a curved channel, and interaction of solitary waves with a vertical circular 
cylinder. 

1. INTRODUCTION  
 

Numerical models that solve Boussinesq-type water wave evolution 
equations are commonly used to investigate surface wave propagation and 
transformation in coastal regions. Most of the models use finite difference 
schemes to discretize the equations over uniformly-spaced rectangular grids 
(e.g. Abbott et al., 1978; Wei and Kirby, 1995; Nwogu and Demirbilek, 2001). 
The popularity of finite difference schemes is largely based on their simplicity 
and ease of implementation. However, the use of structured grids can severely 
restrict the potential application of such models to complex boundary problems 
such as coastal flooding over complex topography, wave propagation in curved 
channels, wave interaction with coastal structures of arbitrary shape, and wave 
agitation in harbors of arbitrary shape. Unstructured grids provide users the 
flexibility of modeling complex geometries. In addition, the grid resolution can 
be refined where needed such as near structures or in shallow regions. 

Several techniques have been developed to solve Boussinesq-type equations 
over irregular shaped domains. Wang et al. (1992) and Shi et al. (2001) 
developed curvilinear-grid based finite difference schemes. The curvilinear grid 
approach offers the simplicity of structured grid schemes while improving their 
flexibility. However, curvilinear methods might have mapping problems for 
complex grid geometries. Hence, their application remains limited to 
computational domains with relatively simple boundaries. 
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Finite element solution schemes for Boussinesq equations have been 
developed by Antunes do Carmo et al. (1993), Ambrosi and Quartapelle (1998), 
Walkley and Berzins (2002), Woo and Liu (2004) and others. Compared to 
structured finite difference schemes, the adoption of an unstructured grid can 
add considerable difficulty to the discretization of the equations, treatment of 
the third-order spatial derivative terms that govern the dispersive properties of 
the equations, and change the conservation properties of the discretized 
equations. Walkley and Berzins (2002), for example, showed that large local 
variations in mesh size, or the existence of dominant orientations of the cell 
faces could have a noticeable impact on the numerical solution.  

Classical finite volume schemes that are commonly used to solve the 
shallow water equations have also been modified to solve Boussinesq-type 
equations. Soares-Frazão and Zech (2002) proposed a “hybrid finite-volume 
scheme”, where the dispersive terms are considered to be forcing terms and 
placed on the right-hand of the equations. The finite volume method is used to 
solve the shallow water part of the equations with the dispersive forcing terms 
evaluated using a finite difference scheme. Bradford and Sanders (2002) 
proposed a two-step approach. They initially neglect the dispersive terms, thus 
solving the shallow water equations. The temporary solutions are then used to 
estimate the dispersive effects and obtain new values for the main variables. 
Hybrid finite volume schemes that do not include the dispersive terms as an 
integral part of the solution are bound to have convergence problems in deeper 
water as the effects of frequency dispersion become relatively more important. 

An important consideration in the development of unstructured grid 
schemes for Boussinesq-type equations with either finite element or finite 
volume methods is the stability of the numerical scheme. Placement of the water 
surface elevation and velocity variables at the element nodes can lead to 
spurious numerical oscillations that would require filtering and/or other 
stabilization measures. Spurious numerical oscillations can be avoided by using 
the staggered mesh concept of Harlow and Welch (1965). Although staggered 
meshes locally conserve mass, momentum and energy on structured Cartesian 
grids, local conservation is not necessarily guaranteed for unstructured grids. 
Perot (2000), however, demonstrated that it is feasible to achieve local 
conservation of mass, momentum, kinetic energy and circulation with certain 
staggered-mesh unstructured grids. His approach relies on the concept of the 
dual orthogonal mesh (Delaunay/Voronoi tessellation). A staggered-grid finite 
volume method for solving the Euler equations that does not rely on creating a 
dual Delaunay-Voronoi mesh was proposed by Wenneker et al. (2002). 
Wenneker et al. (2003) later demonstrated that the scheme also conserves mass, 
momentum and energy. 

In this paper, a consistent finite volume method is developed to solve a set 
of two-dimensional Boussinesq-type water wave evolution equations on an 
irregular triangular grid using an approach similar to that of Wenneker et al. 
(2002). In contrast to previous finite element and finite volume Boussinesq 
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solvers where both the free surface elevation and two components of the 
horizontal velocities are co-located at the nodes of the elements, we adopt a 
staggered placement of the variables. The mass conservation equation is 
integrated over a control volume defined over each triangle while the 
momentum equations are integrated over a control volume formed from two 
adjacent triangles. A reconstruction scheme is used to retrieve the full velocity 
vector at the vertices of the triangles. The numerical model is used to investigate 
the propagation of solitary waves in a curved channel, and interaction of solitary 
waves with a vertical circular cylinder. 

2. NUMERICAL METHOD  

Governing Equations 
The governing equations are the weakly-nonlinear set of Boussinesq-type 

mass and momentum conservation equations derived by Nwogu (1993). The 
depth-integrated mass conservation equation can be written as: 

(1) 0=⋅∇+ Qtη

where ( )yx ∂∂∂∂=∇ /,/ , η(x,t) is the water surface elevation and Q(x,t) is the 
volume flux density given by: 
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where h is the water depth, uα  is the horizontal velocity at a reference elevation 
z = zα in the water column. The momentum equation is given by: 
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where g is the gravitational acceleration. The elevation of the velocity variable 
zα is chosen to minimize differences between the linear dispersion 
characteristics of the model and the exact dispersion relation for small amplitude 
waves and is given by zα = -0.535h (Nwogu, 1993). 

Grid Topology and Placement of Variables 
A staggered placement of the variables is adopted as shown in Fig. 1. The 

water surface elevation is defined at the centroids of the triangles, while the 
normal component of the velocity is defined at the midpoints of the triangle 
edges. The velocities at the cell faces are assumed to be continuous in contrast 
to standard shallow water finite volume schemes that allow for discontinuous 
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velocities at cell faces. 
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Figure 1. Staggered placement of variables on a triangular grid. 

 

Control Volume Integrated Equations 
The control volume used for the mass conservation equation consists of a 

single triangular cell. The mass equation (Eq. 1) is integrated over the control 
volume to yield: 
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where Ωβ is the surface area of cell β. The control volume for the momentum 
equation is composed of two adjacent grid cells (see Fig. 2). The momentum 
equation is initially projected in the direction normal to the common edge, and 
then integrated over the combined control volume area. The control volume-
integrated momentum equation for water of constant depth is given by: 
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where β  and γ denote adjacent cells, α = -0.392, NE is the unit normal vector to 
common edge, and  ΩE = Ωβ + Ωγ is the surface area of the control volume. The 
advection term in Eq. (5) has been modified by assuming the flow to be 
irrotational in the horizontal plane, i.e. )()( αααα uuuu ⋅∇=∇⋅ . The projected 
momentum equation is independent of the choice of direction for NE. A simple 
convention used in this paper is to define a unique direction for NE by orienting 
all unit normal vectors away from the origin of the coordinate system.  
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Figure 2. Control volume of integrated momentum equation. 

Evaluation of Area Integrals 
In order to numerically evaluate the mass conservation equation (Eq. 4), the 

divergence theorem is used to convert the area integral of the volume flux term 
into a line integral along the triangle edges. The water surface elevation is 
assumed to be constant over the area of the cell and defined at the centroid of 
the cell, while the flux terms are assumed to be constant along the cell edges and 
defined at the mid-point of the cell edges. The mass conservation equation then 
becomes:  
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where ηβ is the water surface elevation at the centroid of cell β, li are the lengths 
of the sides of cell i, ni are their respective outward unit normal vectors, and Ui 
= uα · ni is the outward normal component of the velocity uα at the midpoint of 
cell edge i.  

The values of η at the cell edges are estimated using a weighted average of 
the values of η at the centroids of neighboring cells:  

(7) γγββ ηψηψη +=i

The weighting coefficients ψβ, ψγ are calculated based on the relative distance of 
the centroids [(xβ, yβ), (xγ, yγ)] from the midpoint of the cell edge: 
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The second term on the right hand side of Eq. (6) represents the dispersive term 
in the mass conservation equation. It requires the evaluation of the projected 
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( )( )uα
value of the gradient of the divergence of the velocity vector ∇ ⋅∇  along 
the cell edges. The divergence theorem is initially used to approximate ∇  as 
a scalar quantity defined at the centroid of the cells: 
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By making use of the vector identity AAA ⋅∇−⋅∇=⋅∇ fff )(
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 and the 
divergence theorem, the dispersive term is then evaluated as: 
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The values of ∇ along the cell edges are obtained from the centroidal values 
using the scalar reconstruction scheme given in Eq. (7). 

αu⋅

The divergence theorem is also used to transform the momentum equation:  
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It should be noted that the dispersive term in the momentum equation (second 
term on the left hand side of Eq. 11) can yield up to thirteen normal velocity 
components corresponding to five edges of the two adjacent cells of the surface 
of integration, and eight additional edges from cells adjoining the surface of 
integration.  

The velocity-squared term at the mid-point of the cell edges ( is 
approximated as the average of the values at the neighboring nodes. The full 
velocity vectors at the nodes are reconstructed from the normal components of 
the velocity at the midpoints of all the edges that connect to the node using the 
least-squares minimization scheme of Dukowicz and Meltz (1992). The scheme 
minimizes the difference, f, between the projected nodal velocity u in the normal 
direction to the face and the actual normal velocity at the face: 

)

(12) 

where ψi are empirically assigned weighting coefficients and k is the number of 
edges that connect to the node. If all weighting coefficients are assigned a value 
of one, the least-squares solution is given by: 
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The ψ coefficients can also be used to enforce Dirichlet boundary conditions at 
boundary nodes. This is done, for example, by assigning the coefficients of the 
inner faces a value of one, and the coefficients of the boundary faces a value 
much greater than one. 

Time Integration 
The mass and momentum equations are integrated in time using an iterative 

Crank-Nicolson scheme with a predictor-corrector scheme used to provide an 
initial guess. The scheme consists of three stages. At every time step t = nΔt, a 
predictor scheme is used to calculate the values of the variables at t = (n+1/2)Δt. 
These values are used in the following corrector stage to calculate the values of 
the variables at t = (n+1)Δt; which are then used as an initial guess in an 
iterative Crank-Nicholson scheme. A summary of the approach is provided in 
Table 1 below.  

Table 1. Summary of Crank-Nicolson scheme. 

  Water Surface Elevation Normal Component of Velocity 

Predictor  ( )nn
c

nn Uft ,
2

2
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ηηη Δ
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m
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1 ++ += nnn UUU  

 
The matrix A is constructed from the left hand side of the discretized 
momentum equation. The matrix is relatively sparse with each row containing a 
maximum of 13 non-zero entries. Two sparse matrix solvers were implemented, 
the Generalized Minimum Residual (GMRES) method and the Successive 
Overrelaxation (SOR) scheme. 

3. NUMERICAL RESULTS  

Propagation of Solitary Waves in Curved Channels 
Shi et al. (1998) investigated the propagation of solitary waves through 

curved channels using a curvilinear finite difference method. Their work 
focused on the effect of channel width and bending sharpness on the reflected 
and transmitted waves. We consider one of Shi et al.’s numerical experiments 
involving a curved channel with a smooth 90º bend. The channel is 5h wide and 
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has an inner radius of 10h at the bend. The channel’s upstream and downstream 
legs are both 100h long.  

  

 

t = 0 

 

t = 8.8(h/g)1/2

t = 27.2(h/g)1/2

t = 48.5(h/g)1/2

Figure 3. Snapshots of the predicted wave patterns for solitary wave propagation in a 
curved channel (w = 5h). 
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The computational domain was discretized into irregular triangular cells 
with side lengths Δl ≈ h. A solitary wave of height H=0.3h was initially placed 
at a distance x = 85h from the upstream edge of the channel. The solitary wave 
profile was obtained from a Fourier series solution of the Boussinesq equations. 
Numerical simulations were performed with time step size Δt = 0.05(h/g)1/2 for a 
duration of 48.5(h/g)1/2. The predicted wave patterns are shown in Figure 3. 
Wave reflection from the outer wall of the bend leads to a larger wave elevation 
in that corner as the waves propagate around the bend. The wave front in the 
outer corner also accelerates, eventually catching up with the slower waves in 
the inner corner to form a uniform crest in the downstream section. The 
predicted wave patterns are similar to those presented in Shi et al. (1998).  

The transmitted wave profile at t = 48.5(h/g)1/2 is shown in Figure 4. The 
transmitted wave had an amplitude of 0.259h with its crest is located at x = 
133h. Shi et al. predicted an amplitude of 0.276h with the crest located at x = 
136h. Both results are comparable, given the different form of Boussinesq 
equations employed by Shi et al. (1998), as well as differences in the numerical 
scheme. 

 

h
η

hx /

Figure 4. Initial and transmitted wave profile at t = 48.5(h/g)1/2. 
 
The simulations were repeated for a wider channel with a width of 10h. The 
channel width is now comparable to the solitary wavelength (λ = 2π/(3H/4h3)1/2 
≈ 13h). The predicted wave patterns are shown in Fig. 5. For the wider channel, 
the phasing between the incident and reflected waves at the bend leads to a 
much larger crest elevation (~ 1.5H) at the outer corner. The transmitted wave 
height (0.18h) is smaller compared to the narrower channel results. The 
transmitted wave profile is also no longer uniform across the crest and has larger 
trailing waves.  
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Figure 5. Snapshots of the predicted wave patterns for solitary wave propagation in a 

curved channel (w = 10h). 

Solitary Wave Interaction with a Vertical Circular Cylinder 
Antunes do Carmo et al. (1993) conducted laboratory experiments to 

investigate the interaction of a solitary wave with a vertical cylinder. The wave 
flume was 9 m long, 0.55 m wide and had a water depth of 0.15m. A 0.16m-
diameter circular cylinder was installed in the middle of the flume. The center of 
the cylinder was located at x = 4.5m, y = 0.275m relative to an origin defined at 
the lower corner of the upstream end of the flume. Six wave probes were used to 
measure the water surface elevation at the following locations: Gauge 1 = 
(4.400, 0.275), Gauge 2 = (4.500, 0.170), Gauge 3 = (4.500, 0.045), Gauge 4 = 
(4.600, 0.275), Gauge 5 = (4.975, 0.275), and Gauge 6 = (5.375, 0.275).  
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Figure 6. Triangular mesh used for solitary wave-cylinder interaction test. 

 
Figure 7. 3-D view of solitary wave interaction with cylinder. 
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Figure 8. Measured and predicted time histories for solitary wave-cylinder interaction 
test. 
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A numerical flume was set up to reproduce the laboratory experiments. The 9m 
by 0.55m tank was discretized into triangles with side lengths of the order of 
0.03m as shown in Fig. 6. A solitary wave with height H = 0.0375m was 
generated inside a tank. Numerical simulations were performed for duration of 
6.5s at a time step of 0.008s.  

Snapshots of the wave-cylinder interaction are shown in Fig. 7 while the 
predicted and measured surface water elevation time histories are compared in 
Fig. 8. Reasonable agreement is observed between the numerical and 
experimental results at Gauges 3, 5 and 6, which are located farthest from the 
cylinder. Greater discrepancies are seen at Gauges 1, 2 and 4, which are in the 
immediate vicinity of the cylinder. Antunes do Carmo et al. (1993) obtained 
similar amplitude and phase shifts with their finite element Boussinesq model. 
Wu (2004) obtained better model-data comparisons with a Navier-Stokes solver. 
We suspect that the phase differences are related to numerical and analytical 
errors in the weakly nonlinear model phase speeds and plan to repeat the tests 
on a finer mesh grid with a fully nonlinear Boussinesq solver.  

4. CONCLUSIONS 
A new numerical method has been developed to solve Boussinesq-type 

water wave evolution equations over an unstructured grid. The scheme is based 
on the finite volume concept where the governing mass and momentum 
equations are integrated over local control volumes in order to locally satisfy the 
conservation laws. A staggered placement of the surface elevation and velocity 
variables is adopted to avoid spurious numerical oscillations and ensure 
stability. The scheme solves for the normal velocities along cell edges, as 
opposed to the two velocity components, making it relatively more 
computationally efficient. Preliminary numerical experiments have been 
conducted for solitary wave propagation in a curved channel and solitary wave 
interaction with a circular cylinder. The tests have demonstrated the viability of 
the staggered unstructured grid approach. Additional work is currently being 
performed to extend the model to the fully nonlinear Boussinesq equations.  
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