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ABSTRACT 
 
This paper describes the derivation and implementation of combined 
wave diffraction-refraction in a spectral directional wave model for 
coastal applications. The wave refraction is included in the total 
derivative of wave-action while diffraction is formulated as wave 
energy diffusion in the wave-action balance equation. The combined 
diffraction-refraction model equation conserves the total wave-action 
under no net energy gain or loss. The numerical solution scheme for the 
model equation is simple and computation is stable. The method is 
demonstrated in a two-dimensional (2D) steady-state spectral model for 
a long wedge, an idealized shoal and a coastal harbor physical model. 
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INTRODUCTION 
 
Wave diffraction theory for the interaction with structures has been 
studied by many researchers in the past following the early work by 
Sommerfeld (1896). Combined wave diffraction-refraction is more 
challenging mathematically and analytical solutions are scarce (Penny 
and Price, 1944). The original work for combined diffraction-refraction 
by Berkhoff (1972, 1982) and recent investigations are mainly based on 
either Boussinesq or Mild-slope equation (Nwogu and Demirbilek, 
2001) using phase-resolving wave models that require advanced 
numerical techniques to calculate solutions. Because the phase-
resolving models are computationally intensive, their applications are 
often limited to local small areas.  For larger coastal areas, the spectral 
wave models that neglect wave phase calculations are popular as they 
are computationally more efficient than the phase-resolving models. 
However, the implementation of wave diffraction in today’s coastal 
spectral wave models is more or less based on empirical treatment or 
simple formulation extending the features of phase-resolving models 
(Chawla et al. 1998; Mase, 2001). The present paper describes a 
theoretical derivation of wave diffraction combined with wave 
refraction for spectral wave models. The approach of diffraction 
formulation is consistent with the well-known Helmholtz equation, and 
its implementation in the wave action balance equation conserves wave 
energy for combined diffraction-refraction. 
 

THEORECTICAL BACKGROUND 
 
Diffraction Equation 
 
Under the linear wave theory and irrotational motion assumptions for 
an incompressible fluid, the general solution form of three-dimensional 
velocity potential φ  with a uniform depth h  and constant frequency 

σ  in a Cartesian coordinate system ( , , )x y z is 
 

( , , ) ( ) ( , ) i tx y z Z z F x y e σφ =                                                     (1) 
 

where 
cosh ( )

( )
cosh

g k h z
Z z

khσ

+
= is the vertical dependency, k =  

wave-length/ 2π  is wave number, ( , )F x y  is the horizontal 

dependency, i te σ is the time dependency for periodic motion with 

frequency σ , and 1i −= .  Substituting Eq. 1 into the Laplace 

equation 2 0φ∇ = for the fluid motion under surface water waves 

yields the Helmholtz equation in ( , )F F x y= as 
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The solution F  is a complex function and can be expressed as 

| | iF F e α= where the magnitude | |F is the wave amplitude and α is 
the wave phase in space. The directional wave energy density 

( , , )E E x y θ=  is related to F  as 2| |E F=  and 2 2iF E e α= . 
 
Multiplying 2F to Eq. 2 yields 
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Recall φ  satisfies the dynamic free surface boundary condition 

(DFSBC) at the water surface ( , , )x y tη : 
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∂ ∂ ∂
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 
− + + + = 

 
   on  z η=                (4) 

 
Substituting Eq. 1 into Eq. 4 and linearizing the DFSBC lead to 
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x y

∂ ∂

∂ ∂
+ =                                                                     (5) 

Combining Eqs. 3 and 5 yields the Helmholtz equation in 2F as 
 

2 2 2 2
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For spectral wave diffraction, Eq. 6 can be divided into real and 

imaginary parts by using the expression of 2 ( cos sin ) i k kx yF E e θ θ+= , 
where ( , )x yθ θ=  is wave propagation direction. The imaginary part 
represents the convection of wave energy or wave-action transport in 
the wave energy or wave-action balance equation.  The real part is 
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or 
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where ( , , )G x y θ  is related to the wave energy spreading from 

diffraction and /N E σ=  is the wave-action. 
 
Wave-Action Balance Equation 
 
For coastal spectral wave models, the wave-action balance equation is 
 

   
gx gy g

nl in out

c N c N c NdN N
S S S

dt t x y
θ
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where cosgx gc c θ=  and singx gc c θ=  are x and y components, 

respectively, of  the wave group 
 gc
k
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represents the rate of wave-action transport with respect to direction by 
wave refraction.  Eq. 9 states that the total change of wave-action 

/Nd dt is balanced by the source function inS , sink function outS , 

and non-linear nlS  terms. While the source and sink functions can add 

and dissipate energy, the non-linear function nlS  including wave 
diffraction and wave-wave interaction will conserve the wave-action.  
In the case that both sink and source functions are absent, the total 
wave energy and wave-action are conserved regardless diffraction, 
refraction, or non-linear wave-wave interaction occurs or not. 
 
COMBIND REFRACTION-DIFFRACTION 
 
Formulation 
 
Applying Eqs.7 or 8 for spectral wave diffraction is not straight forward 
because the function G  involves diffraction direction that is part of the 

solution.  Because 2| |E F= and by comparing Eqs. 2 and 7, the value 
of G  should fall between 1 and 2, depending on monochromatic or 
narrow-band spectrum and locations. A valid function G  should 
conserve wave energy in Eq. 7 and this condition can exist only if G  is 
a result of diffusion of wave energy in direction defined as 
 

2

2 
( , , )E

G x y Eθ
θ

ε
∂

∂
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whereε is the efficiency of diffusion. 
 
A simple example for Eq. 10 is a symmetric directional distribution of 
wave energy in the form of 
 
ˆ ˆ( , , ) ( , ) ( )ox y x yE E Hθ θ=                                                      (11) 

with the directional spreading function ˆ ( )H θ described by a 2sech  
distribution (Donelan et al. 1985) as  
 

2sech
2

ˆ ( ) ( )H θ θ
β

β=                                                                   (12) 

where ( , )x yβ , a positive number, is a scaling factor.  Eqs. 11 and 12 
satisfy the following conditions: 
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where  oE is the total local spectral energy density. 
 
Because 
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and use the identity 2
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Eq. 14 can be rewritten as 
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Accordingly, Eq. 10 can be expressed as 
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and the corresponding G  in Eq. 10 is 
 

24
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( , , )
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θ

β
β

ε
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Because sech  has a range between 0 and 1, the valid 2εβ values 

should be between 1/4 and 1. Typically, ˆ ( )H θ  has a narrow 

distribution with β = 30 to 100 and, accordingly, ε ~ 310− to 410− . 
 
Governing Equation 
 
For non-flat bottom, it is necessary to include the transport rate of 
wave-action as 
 

2

2 0
 

  
    

( ) ( )g g
gx x y y

c cN N Nc k
k k θ

ε ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
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 
          (17) 

The above equation represents wave diffraction contribution to the non-
linear function nlS  in Eq. 9.  By excluding non-linear wave-wave 
interactions, the wave-action balance equation can be rewritten as 
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in outS S+ +                                                                                       (18) 

where /c kσ= is wave celerity and ε  is in the order of 410− . 
 
NUMERICAL SIMULATIONS 
 
Eq. 18 with the combined diffraction-refraction formulation is 
demonstrated by numerical computations. A 2D steady-state spectral 
model in the Coastal Modeling System (Lin et al. 2008) is applied for 
the demonstration. The model employs a forward-marching, finite-
difference method to solve the wave-action balance equation (Mase, 
2001) in a rectangular grid. It operates on a coastal half-plane of 

0x ≥  that primary waves propagate only from the seaward boundary 
toward shore. The seaward reflection is calculated by a backward 
marching after the forwarding-marching calculation is completed.  The 
full-plane mode combines solutions from running two half-plane wave 

transformations, where each solution covers the wave direction exactly 
opposite to the other half-plane wave transformation.  
 
The numerical computation is based on an upwind implicit scheme for 
solving the wave-action discretized in frequency, direction, and space 
(Mase, 2001). The formulation for diffraction terms associated with 

 
  

( )gy y
Ncc∂ ∂

∂ ∂
 and 2 2 /N θ∂ ∂  in the numerical scheme is 

straight forward. The formulation for / xN∂ ∂  and ( ) /gx xc N∂ ∂ in 

the primary wave propagation direction is based on the backward 
difference algorithm. The forward difference term / xN∂ ∂  associated 
with the diffraction is assumed to be small and thus neglected in the 
calculation. 
 
The model calculates monochromatic and random waves using the 
following relation between the total spectral energy density oE and 

wave height sH : 
 
 

28 1( ) osH Eλ= +                                                                      (19) 

 

where 
2
2

4

1
o

m
m m

λ = −  is the bandwidth parameter of a spectrum 

(Cartwright and Longuet-Higgins, 1956) and ( )Em dσ σ σ= ∫ 
  is 

the  th moment of the spectrum. For  =0, o oEm = and λ  value is 
between 0 (monochromatic wave) and 1 (broad-banded spectrum). 
 
Numerical examples are given in the following subsections for a long 
wedge, an idealized shoal, and a coastal harbor physical model. These 
model simulations are used for the demonstration purpose because the 
spectral wave models can only calculate changes in the local wave 
energy content and transport but not the wave phase information. The 
model wave height computed by Eq. 19 essentially reveals the local 
wave energy level and by no means represents the wave height 
observed in the physical model or measured in the field.  The difference 
between model calculated wave height and data is evident behind a 
shoal or in front of a reflective wall that full or partial standing waves 
occur with crossing waves from different directions. 
 
An Infinite Wedge 
 
Analytical solution for monochromatic unidirectional incident waves 
interacting with a fully-reflective vertical wedge of any angle on a flat 
bottom is available (Chen, 1987). The wave model domain was a square 
grid of 2,010 m × 2,010 m consisting of 201 × 201 cells with cell size 
of 10 m × 10 m and a uniform water depth of 1,000 m. The vertex of 
the wedge is located at the center cell of the grid. The vertical wedge 
was represented by dry cells with an elevation of 2 m. The incident 
wave height is 1 m, and the wave period is 8 sec (0.125 Hz) 
corresponding to a wavelength of approximately 100 m. The spectral 
wave transformation is computed on 10-frequency bins (0.06 to 
0.15 Hz with 0.01-Hz increment) and 35-direction bins (covering a 
half-plane with 5-deg spacing). The incident total wave energy density 
was placed in one directional and frequency bin to represent the 
monochromatic unidirectional waves for the boundary condition. 
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Numerical simulations were conducted for a semi-infinite fully 
reflective breakwater (wedge angle = 0 deg) with incident waves from 
90-deg (normal to breakwater) and from 135-deg oblique direction. The 
model simulated the diffraction with ε = 0.0001. Figs. 1 and 2 show 
the comparison of model wave height with the analytical solution 
(Chen, 1987) for incident waves with 90-deg and 135-deg approach 
directions, respectively. Because the incident wave height is 1 m, the 
wave height contours shown in Figs. 1 and 2 are the same as 
normalized by incident wave height.  The model calculates the resultant 
wave direction by averaging the spectral components from different 
directions. If fully reflected waves are opposite to incident waves, the 
model wave direction is reported as the incident wave direction. This 
occurs in Fig. 1 for incident waves normal to the breakwater as 
reflected waves combine incident waves in front of the breakwater. 
 

 
Fig. 1: (a) Calculated wave height (m) and approximate wave direction, 
and (b) analytical solution of wave height distribution for incident 
waves of 1 m, 8 sec, and 90-deg approach angle normal to fully 
reflective semi-infinite breakwater. 

 
Fig. 2: (a) Calculated wave height (m) and approximate wave direction, 
and (b) analytical solution of wave height distribution for incident 
waves of 1 m, 8 sec, and 135-deg approach angle oblique to fully 
reflective semi-infinite breakwater. 
 
The model results show both the diffracted and reflected energy levels 
in the lee and front of the breakwater similar to the analytical solution.  
The model cannot calculate the standing wave pattern caused by wave 
reflection as shown in the analytical solution. 
 
An Idealized Elliptic Shoal 
 
Vincent and Briggs (1989) have conducted a physical model study for 
wave diffraction-refraction at a mound on a flat bottom. The mound has 

an elliptical perimeter of 2 23.05 3.96 1( '/ ) ( '/ )x y =+  where 'x  

and 'y  are local coordinates in m with the shoal center at 

0' 'x y= = .  The water depth (m) over the shoal is given by 
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3.05 3.96

' 'x y
− − −   

   
   

 

 
with the smallest depth equal to 0.1524 m at the center of shoal. The 
surrounding flat bottom has a constant depth of 0.4572 m.  
 
The elliptical shoal experiment was conducted in a wave basin of 29-m 
long by 35-m wide.  The long axis (y’-axis) of the mound is parallel to 
the wave generator approximately aligned with the global y-axis. The 
incident wave normal direction is parallel to the global x  and local 'x  
axis. The center of the shoal is located at x = 6.1 m and y =13.72 m in 
the global coordinate system. Fig. 3 show the locations of elliptical 
shoal and nine transect lines for wave measurements. 
 

 
Fig. 3: Locations of elliptical shoal and measurement transects. 
 
The elliptical shoal experiment consisted of 18 incident wave 
conditions to investigate different factors, including directional 
spreading, wave randomness, and wave breaking over the shoal. To 
demonstrate numerical modeling of combined diffraction-refraction, 
three incident wave conditions, named as B2, N2 and N4, for narrow 
frequency spectra were simulated. While B2 is associated with a 
symmetric and broad directional spreading, N2 and N4 are associated 
with a relatively narrow directional distribution.  Table 1 presents the 
incident wave height Hs , spectral peak period Tp , spectral peak-
enhancement factor γ , mean direction oθ , and directional spreading 

standard deviation sθ  for B2,  N2, and N4 (Vincent and Briggs, 1989). 
Incident wave condition N4 is for non-breaking test with a wave height 
three times smaller than B2 and N2. The model simulations were 
performed at the laboratory scale. The model domain was a rectangular 
grid of  25.1 m × 27.5 m consisting of 251 × 275 cells with cell size of 
0.1 m × 0.1 m. The spectral wave transformation is computed on 27-
frequency bins (0.6 to 0.99 Hz with 0.015-Hz increment) and 35-
direction bins (covering a half-plane with 5-deg spacing). The 
simulations include cases with wave refraction only and with combined 
diffraction-refraction (useε = 0.0001 for the diffraction calculation). 

 
Table 1. Incident wave conditions B2, N2, and N4 

Case ID Hs (m) Tp (sec) γ  oθ (deg) sθ  

B2 0.0775 1.3 20 0 30 

N2 0.0775 1.3 20 0 10 

N4 0.0254 1.3 20 0 10 
 
Figs. 4 and 5 show calculated wave heights and directions with the 
outline of elliptical shoal and transect locations for B2 and N2, 
respectively. The model results show stronger wave energy focusing 
behind the shoal for a narrower frequency spectrum.  Figs. 6 and 7 
show calculated wave heights and data at Transects 3 and 4 for B2 and 
N2, respectively. Fig. 8 shows calculated wave height and data at 
Transect 4 for N4 (wave data for N4 available only at Transect 4). 
 

 
Fig. 4: Calculated wave height contours and vectors for for B2 with 
elliptical shoal outline (black) and transect lines (blue). 

 
Fig. 5: Calculated wave height contours and vectors for N2 with 
elliptical shoal outline (black) and transect lines (blue). 
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Fig. 6: Calculated wave heights and data at Transects 3 and 4 for B2 
(D-R stands for diffraction-refraction). 
 
 

 
Fig. 7: Calculated wave heights and data at Transects 3 and 4 for N2 
(D-R stands for diffraction-refraction). 
 

 
Fig. 8: Calculated wave heights and data at Transect 4 for N4 (D-R 
stands for diffraction-refraction). 
 
The model results show small difference between runs with refraction 
only and with combined diffraction-refraction (D-R). This indicates 
that wave processes over the shoal is dominated mainly by refraction, 
and diffraction can be negligible.  For B2, the model wave height 
agrees with data at Transects 3 and 4.  For N2, the model calculated 
higher wave height at the middle of Transect 3 and lower wave height 
at the middle of Transect 4. For N4, of which the wave data is available 
only at Transect 4, the model also predicted lower wave height at the 
middle of Transect 4. 
 
The difference between model calculated wave height and data behind 
the shoal may come from several reasons. First, the model wave height 
conversion from total local wave energy, i.e., Eq. 19, based on the 
linear wave theory may not be valid behind the shoal where wave 
activity is highly nonlinear. Second, wave data analyzed by 
conventional Fourier transform or zero-crossing wave height method 
may not be reliable for strong nonlinear waves behind the shoal. Third, 
the narrow directional spreading of spectral waves in N2 and N4 may 
not be accurately produced in the physical or numerical model. These 
factors cause the difference between model wave height and data. 
 
Cleveland Harbor, OH, Model 
 
A 1:100-scale physical model experiment of Cleveland Harbor, Ohio, 
was conducted in 1980-1981 at the US Army Corps of Engineers 
Waterways Experiment Station to investigate waves, currents, water 
levels, and river flow on ship maneuverability (Bottin, 1983) in the 
harbor entrance and within the harbor complex. The harbor, located on 
the south shore of Lake Erie, is protected by two breakwaters with a 
combined length over 10 km (6 mile). The east breakwater consists of 
rubble mound stone and the west breakwater is mainly composed of 
concrete caisson.  The Harbor has two entrances: the main entrance is 
located lakeward of the Cuyahoga River Mouth and the east entrance is 
at the eastern end of the east breakwater.  Fig. 9 shows the harbor main 
entrance area. 
 
The wave model grid was oriented East-West with the offshore 
boundary located approximately along the 16-m depth contour, and 
extended from the most westward to the furthest eastward ends of the 
Cleveland Harbor complex (Fig. 10).  The wave model simulation was 
run in the prototype as the laboratory data were made available in the 
prototype scale. The model rectangular domain is 8.6 km × 20 km (172 
square km), consisting of 860 × 2000 cells with a uniform cell size of 
10 m ×10 m. 
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Fig. 9: Physical model of Cleveland Harbor main entrance and 
wave/current data collection locations. 
 

 
Fig. 10: Numerical wave model domain for Cleveland Harbor; black 
dot denotes wave/current gauge location. 
 
The spectral wave transformation is computed with 30-frequency bins 
(0.04 to 0.33 Hz with 0.01-Hz increment) and 35-direction bins 
(covering a half-plane with 5-deg spacing).  A constant Manning n = 
0.025 was used for bottom friction. The diffraction and reflection are 
calculated with ε = 0.0001 and a reflection coefficient = 0.5. Wave-
current interaction feature, infra-gravity wave, wave transmission, and 
wave overtopping of breakwaters were triggered in the model (Lin et al. 
2011a). The experiment tested 126 cases, consisting of 20 incident 
wave heights (monochromatic wave), 12 wave periods, 3 wave 
directions (unidirectional), 3 lake water levels, and two river 
discharges.  For demonstration of modeling combined diffraction-
refraction, a most probable incident wave condition of 3.14-m and 8-
sec at the normal (mean) lake level with wave direction nearly 
perpendicular to long breakwaters and a strong river influx of 227-
m3/sec (8,000-cfs) is simulated. The background steady-state current 
field is supplied by a CMS flow model (Lin et al. 2011b). 
 
Figs. 11 and 12 show calculated wave fields in the harbor main 
entrance with and without the diffraction calculation, respectively.  
There are significant differences between model calculated wave height 
and spatial variation of wave fields with and without diffraction 
calculation in the main entrance channel. Fig. 13 compares the model 
calculated wave height with data for simulations with and without the 
diffraction calculation.  A 45-deg line shown in the figure indicates a 
perfect match between calculated and measured wave heights. The 
model wave height calculated with combined diffraction-refraction 
agrees better with data than the calculation without the diffraction. This 
is especially true for large waves interacting with strong current from 
river influx in the main entrance channel. 

 
Fig. 11: Calculated wave heights and directions without diffraction 
calculation; black dot denotes wave/current gauge location. 
 

 
Fig. 12: Calculated wave field with combined diffraction-refraction 
calculation; black dot denotes wave/current gauge location. 
 

 
Fig. 13: Cleveland Harbor calculated wave height and data comparison. 
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CONCLUSIONS 
 
A theoretically-based wave diffraction formulation is provided in the 
wave-action balance equation for spectral wave modeling.  The wave 
diffraction is combined with refraction and other coastal wave 
processes including reflection, wave-current interaction, and wave-
structure interaction, etc. This spectral wave diffraction formulation is 
based on the classical Helmholtz equation that does not require 
additional mathematical approximations for surface wave interaction 
with structures. The combined diffraction-reflection calculation is 
demonstrated for an idealized long wedge, an elliptical shoal laboratory 
experiment, and a physical model of Cleveland Harbor, OH. The 
numerical simulations are performed using a 2D steady-state wave 
spectral transformation model for inlet applications in the Coastal 
Modeling System (CMS) of the US Army Engineer Research and 
Development Center. The numerical solution scheme for the model 
governing equation is computationally robust and stable. The case of 
idealized long wedge with the wedge angle of 0 represents a fully 
reflective semi-infinite breakwater. The analytical solution exists for 
the long vertical wedge that includes both wave diffraction and 
reflection. Two wave approach directions were simulated: 
perpendicular to the breakwater and 135-deg oblique incident direction. 
The model results show sufficient spectral wave diffraction and 
reflection in the lee and front of breakwater. The model wave height 
calculated from the total local wave energy is consistent with the 
analytical solution.  Because spectral wave model does not calculate 
wave phase, it cannot capture full or partial standing wave patterns 
developed in the areas with reflected waves. 
 
Model simulations for the elliptical shoal at the laboratory scale show 
that wave processes at the submerged shoal is mainly dominated by 
wave refraction, and diffraction can be negligible.  Three incident wave 
conditions for narrow-band frequency spectra were simulated: one with 
a broad directional spreading, and the other two with same narrow 
directional distribution but different incident wave height.  The model 
results for the broad directional spreading agree with data behind the 
shoal.  In the case of incident waves with narrow directional spreading, 
the model tends to under-predict the wave height behind the shoal. This 
difference between model calculated wave height and data behind the 
shoal may come from the fact that the spectral wave model cannot 
accurately predict highly nonlinear and narrow directional spreading 
waves behind the shoal.  The technical difficulty to generate accurately 
spectral waves with narrow directional spreading in the physical model 
may also be a contributor to the difference between model calculated 
wave height and data. 
 
The physical model of Cleveland harbor, OH, is more for the real world 
condition with combined coastal wave processes including diffraction, 
refraction, reflection, bottom friction, wave overtopping rubble-mound 
and vertical-wall breakwaters, and wave-current interaction at various 
wave levels. The model simulation includes a storm wave condition at 
the mean water level with a strong river influx in the back side of the 
harbor. The model results were compared with and without diffraction 
calculation. The model wave heights calculated with combined 
diffraction-refraction agree better with data than without the diffraction, 
especially for large waves interacting with strong current in the main 
entrance channel. 
 
The examples of model simulations given in the present paper are 
intended for the demonstration purpose because the spectral wave 
models can only calculate the change and transformation of the local 
wave energy but not the wave phase information. Therefore, the model 
calculated wave height is only meaningful to show the local wave 
energy level and by no means to represent the actual wave height 

observed in the physical model or measured in the field.  The difference 
between model calculated wave height and data is evident behind a 
shoal or in front of a reflective wall that full or partial standing waves 
occur with crossing waves from different directions.  
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