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ABSTRACT 
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An implicit finite volume scheme is developed to solve the depth-averaged 2-D shallow water flow equations. The 
computational mesh consists of rectangular cells, with quadtree technology incorporated to locally refine the mesh 
around structures of interest or where the topography and/or flow properties change sharply. The grid nodes are 
numbered by means of an unstructured index system for more flexibility. The governing equations are solved using 
the SIMPLEC algorithm on non-staggered grid to handle the coupling of water level and velocity. In this non-
staggered system, primary variables u-, v-velocity, and water level are stored on the same set of grid points, and 
fluxes at cell faces are determined using the Rhie and Chow’s momentum interpolation method to avoid spurious 
checkerboard oscillations. The discretized algebraic equations are solved iteratively using the GMRES method. The 
model has been tested against measurement data for steady flow around a spur-dyke in a laboratory flume and tidal 
flows in Gironde Estuary, France and Grays Harbor, USA. The model reasonably well reproduces the temporal and 
spatial variations of water level and current speed observed in the measurements. The laboratory test has 
demonstrated that the quadtree mesh is cost-effective, while the two field cases have shown that the model is very 
stable and handles wetting and drying efficiently. 
 
ADDITIONAL INDEX WORDS: Shallow water flow equations, two-dimensional, finite volume, numerical model, 
quadtree rectangular mesh. 
 

 
INTRODUCTION 

 
Because of their nonlinearity and irregular domains, most of 

the real-life problems of surface water flows in rivers, lakes, 
estuaries and coastal water bodies have to be solved 
numerically. The numerical methods widely used include finite 
difference method (FDM) (Fletcher, 1991), finite element 
method (FEM) (Chung, 1978; Zienkiewicz and Taylor, 2000), 
finite volume method (FVM) (Patankar, 1980; Ferziger and 
Peric, 1995; Wu, 2007), etc. The algebraic equations resulting 
from the classic, structured FDM and FVM usually have banded 
coefficient matrices that can be handled efficiently, whereas the 
algebraic equations from the unstructured FEM usually have 
sparse coefficient matrices that require relatively tedious effort 
for solution. However, the classic FDM and FVM usually adopt 
regular meshes and encounter difficulties in conforming to the 
irregular domains of surface water flows, while the FEM 
typically uses irregular meshes that can conveniently handle 
such irregular domains. Therefore, it has been a trend in recent 
decades to develop the FDM and FVM based on structured or 

unstructured irregular meshes with quadrilaterals, triangles and 
polygons, which have the grid flexibility of the FEM and the 
merits of the classic FDM and FVM. 

Enhancement of accuracy of numerical solution is one of the 
main concerns in computational simulation of free surface 
flows. One may simply use high-order accurate schemes to 
discretize the differential governing equations for this purpose, 
but a high-order scheme involves more computational nodes, is 
more complicated and requires more computational time. 
Numerical schemes higher than third or fourth order have been 
rarely used in simulation of surface water flows. Another 
approach to enhancing accuracy is through refinement of mesh. 
Numerical discretization based on a finer mesh usually has less 
truncation errors and thus yields more accurate solution. 
However, globally refining a large, complex computational 
mesh is often costly, and only locally refining near boundaries 
and high-gradient regions is sometimes needed. For local 
refinement, an unstructured triangular mesh is a good choice, 
whereas a structured rectangular mesh is inconvenient because it 
refines the mesh in regions which are unnecessary. A structured 
quadrilateral (curvilinear) grid can serve this purpose by 
stretching or shrinking the mesh lines, but it is less flexible for 
very large, complex domains than the triangular mesh. On the 
other hand, the rectangular or quadrilateral mesh is more 
convenient than the triangular mesh for establishing high-order 
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(e.g., second and third) schemes or for discretizing second or 
higher order spatial derivatives. Therefore, quadtree 
(telescoping) rectangular or quadrilateral mesh has been recently 
used for local refinement of computational mesh in 
computational fluid dynamics (CFD) (Muzaferija, 1994; 
Ferziger and Peric, 1995; Greaves, 2004; Liang et al., 2008; 
Nabi, 2008). On the quadtree mesh, a coarse cell is split into 
four child cells, and as many levels of refinement as necessary 
can be used. The quadtree mesh can be arranged as block-
structured or completely unstructured. It is flexible in mesh 
generation, while keeping most advantages of the rectangular or 
quadrilateral mesh.  

For incompressible flows such as surface water flows, the 
governing equations are the Navier-Stokes equations, in which 
the velocity is linked to the pressure gradient by the momentum 
equations but not the continuity equation. The continuity 
equation is just an additional constraint on the velocity field 
without directly linking to the pressure. Because of such a weak 
linkage, the convergence and stability of a numerical solution of 
the Navier-Stokes equations depends largely on the coupling 
between the pressure and velocity fields. Storing the variables at 
the geometric center of the control volume in combination with 
linear interpolation for internodal variation usually leads to non-
physical node-to-node (checkerboard) oscillations. One 
approach for eliminating such oscillations is to use the staggered 
grid, as adopted in Harlow and Welch’s (1965) MAC (Marker 
and Cell) method, Chorin’s (1968) projection method, and 
Patankar and Spalding’s (1972) SIMPLE (Semi-Implicit Method 
for Pressure-Linked Equations) algorithm. The other approach is 
to use the momentum interpolation technique proposed by Rhie 
and Chow (1983) based on the non-staggered grid. For the 
depth-averaged 2-D simplification of the Navier-Stokes 
equations in the case of shallow water flows, the linkage 
between the flow velocity and pressure (water level) is improved 
in the continuity equation, but the ware-surface-gradient terms 
remain in the momentum equations and the issue of coupling 
velocity and water level still exists somehow. In recent years, 
the staggered grid approaches and the Rhie and Chow’s (1983) 
momentum interpolation method on non-staggered grid have 
been applied to the depth-averaged simulation of surface water 
flows (Wenka, 1992; Lu and Zhang, 1993; Ye and 
McCorquodale, 1997; Minh Duc, 1998; Kim et al., 2003; Wu, 
2004). In addition, several attempts (e.g., Le Roux et al., 1998) 
have been made in the FEM to eliminate the non-physical 
oscillations. 

This paper presents recent advances in the Coastal Modeling 
System (CMS) for nearshore circulation developed under the 
Coastal Inlets Research Program (CIRP) of U.S. Army Corps of 
Engineers (Militello et al., 2004; Buttolph et al., 2006). The 
existing CMS circulation model (called CMS-Flow) solves the 
2-D shallow water equations using an explicit FVM on 
structured rectangular mesh. It computes the unsteady water 
level and current velocity fields by solving the depth-averaged 
2-D shallow water flow equations on a non-uniform Cartesian 
grid with an explicit finite volume scheme. It can simulate tide, 
wind and wave driven currents. It is two-way coupled with the 
spectral wave transformation model called CMS-Wave, which 
solves the steady-state wave-action balance equation on a non-
uniform Cartesian grid with a finite difference scheme and 

considers wind wave generation and growth, diffraction, 
reflection, dissipation due to bottom friction, white capping and 
breaking, wave-wave and wave-current interactions, wave 
runup, wave setup, and wave transmission through structures 
(Lin et al., 2008). To improve the CMS-Flow model’s 
computational efficiency, an implicit depth-averaged 2-D 
scheme has been designed and tested to solve the shallow water 
flow equations based on a quadtree rectangular mesh. This 
model solves the 2-D shallow water equations for arbitrary 
combinations of currents and waves, considering the effect of 
phase-averaged wave radiation stresses on the current. The 
governing equations are solved within the FVM with the 
SIMPLEC (SIMPLE Consistent; van Doormaal and Raithby, 
1984) algorithm on non-staggered grid to handle the coupling of 
water level and velocity. Due to limit of paper length, the 
numerical solution methodologies used in the new CMS flow 
model are the main focus here, while the wave/current 
interaction, bottom friction, cross-shore boundary condition, 
sediment and salinity transport, and many other related issues 
will be addressed on other occasions. 

 
GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 
 

The depth-averaged shallow water equations in the Cartesian 
coordinate system are written as 
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     (3) 

where t is the time; x and y are the horizontal Cartesian 
coordinates; h is the total flow depth; u and v are the depth-
averaged flow velocities in x- and y-directions; η is the water 
surface elevation above the reference sea level; g is the 
gravitational acceleration; ρ is the density of flow; νt is the eddy 
viscosity due to turbulence; bx and by are the bed shear stresses 
in x- and y-directions that are determined by 2 2

bx fc u u v    

and 2 2
by fc v u v   ; 2 1/3

fc gn h , in which n is the 

Manning’s roughness coefficient; Sx 
and Sy are the wave 

radiation stresses in x- and y-directions; wx 
and wy are the wind 
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driving forces; and fc is the Coriolis force coefficient. Because 
the present paper focuses mainly on the numerical solution 
methods of the established flow model, determination of the 
wind driving force and the wave radiation stresses refers to 
Buttolph et al. (2006) and Lin et al. (2008).  

Several turbulence models, including the depth-averaged 
parabolic eddy viscosity model and the modified mixing length 
model, have been implemented in the developed model to 
determine the eddy viscosity νt. In the depth-averaged parabolic 
model, the eddy viscosity is calculated by νt=αu*h, in which u* is 
the bed shear velocity, u*=[cf(u

2+v2)]1/2, and α is an empirical 
coefficient between 0.3–1.0. It is noted that if α is set to 0.578cf, 
then the depth-averaged parabolic model reduces to the Falconer 
(1980) equation for eddy viscosity previously used in the CMS-
Flow model. 

The depth-averaged parabolic eddy viscosity model is 
applicable in the region of main flow but does not account for 
the influence of the horizontal gradient of velocity. 
Improvement can be achieved through combination of the depth-
averaged parabolic eddy viscosity model and the mixing-length 
model (Wu, 2007):  

   
1/222 2

0t hu h l S
    

      (4) 

where      
1/22 2 2

2 2S u x v y u y v x             
; α0 is 

an empirical coefficient, set as κ/6, with κ being the von Karman 
constant; lh is the horizontal mixing length, determined by 

min( , )h ml c h y  , with y being the distance to the nearest wall 

and cm an empirical coefficient between 0.3–1.2. The coefficient 
cm is often given larger values in field cases and smaller values 
in laboratory cases. α0 is smaller than α, because Equation (4) 
takes into account the effect of horizontal velocity gradients 
through the second term on its right-hand side. 

For a well-defined problem governed by Equations (1)-(3), 
the flow discharge or velocity is needed at inflow boundaries, 
while the water level is usually given at outflow boundaries for a 
subcritical flow or at inflow boundaries for a supercritical flow. 
Near rigid wall boundaries, such as beaches and islands, the 
wall-function approach is employed. By applying the log-law of 
velocity, the resultant wall shear stress, 

w
 , is related to the flow 

velocity, 
PV


, at the center, P, of the control volume close to the 

wall by the following relation:  

w PV  


     (5) 

where λ is a coefficient determined as  ln Pu Ey
    with 

P py u y
   , in which μ is the dynamic viscosity, yp is the 

distance from cell center P to the wall, and E is a coefficient 
related to wall roughness (Wu, 2007). Since λ is related to u*, 
iteration is needed to solve Equation (5).   

 

QUADTREE GRID AND DATA STRUCTURE 
 

Because of the complexity of computational domain near 
coastal inlets, a simple structured rectangular mesh requires a 
large number of cells to resolve the detailed flow pattern near 
inlets, navigation channels and in-stream structures. To optimize 
the use of computational resources, we use the multiple-level 
quadtree rectangular mesh with local refinement. In this mesh, 
various levels of fine cells are placed close to the navigation 
channels and in-stream structures where the flow gradients are 
high, while coarse grids are used in the low-gradient regions. 
For simplifying the mesh, a cell is refined by splitting into four 
equal child cells. Corresponding to this refining, any cell has one 
or two faces on each of its south, north, west, and east sides. For 
further simplification, we eliminate those isolated single refined 
or coarse cells. This means that a cell should be refined if all of 
its adjacent cells on either x or y direction are refined, and on the 
other hand, a cell should not be refined if all of its adjacent cells 
are not refined. Through this handling, each cell has only four to 
six faces even though its each side may have one or two faces, 
as shown in Figures 1 and 2, so that the computational mesh will 
be less complicated. 

The data structure for the quadtree mesh can be managed in 
several ways: block-structured, hierarchical tree, and fully 
unstructured. The block-structured approach divides the domain 
into multiple blocks, each of which is treated as structured. 
Interfaces between blocks are specially handled to ensure mass 
and momentum balance through them. The tree data structure 
uses parent and child relations and requires tree traverse to 
determine the mesh connectivity. In the fully unstructured 
approach, all cells are numbered in a one-dimensional sequence, 
and pointers are used to determine the connectivity of 
neighboring cells for each cell. Among the three approaches, the 
fully unstructured approach is simpler and thus is used in this 
study.  
 

 

 
 
Figure 1. Example of quadtree mesh system.
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Figure 2. Control volume in a quadtree mesh.

 

As mentioned in the Introduction, another issue in simulation 
of incompressible flow is the location of primary variables: 
velocity and pressure (water level), related to elimination of the 
non-physical node-to-node (checkerboard) oscillations. One can 
use either staggered or non-staggered grid. On a staggered grid, 
the pressure is located at the center of cells and the u- and v-
velocities are on the faces of cells (Harlow and Welsh, 1965; 
Patankar, 1980). On the non-staggered grid, all the primary 
variables are located at the center of cells. The staggered grid 
can more conveniently eliminate the checkerboard oscillations 
than the non-staggered grid, but the non-staggered grid results in 
a simpler computer code and can minimize the number of 
coefficients that must be computed and stored because many of 
the terms in each of the equations are essentially identical. In 
particular, the staggered grid is more complicated in handling 
the interface between coarse and fine cells where five- or six-
face control volumes are used. Therefore, the non-staggered grid 
approach is adopted here, with the Rhie and Chow’s momentum 
interpolation technique used to eliminate the checkerboard 
oscillations.  

 
NUMERICAL DISCRETIZATION 

 
Integrating the continuity equation (1) over the control 

volume shown in Figure 2, applying Green’s theorem and 
discretizing the temporal derivative by the backward difference 
scheme, one can derive the following equation: 
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where Δt is the time step length; ΔAP is the area of the control 
volume (cell) at node P; Δx and Δy are the lengths of the cell 
faces in either x or y direction; the subscripts w, e, s and n denote 
the west (negative x), east (positive x), south (negative y) and 
north (positive y) sides of the control volume; the subscript k is 

the index of the faces at each side, with a value of 1 or 2; and 
mw, me, ms and mn are the numbers of cell faces at west, east, 
south and north sides of the cell. For the control volume shown 
in Figure 2, mw=1, me=2, ms=1 and mn=2. For simplicity, mw, me, 
ms, mn, and the superscript n+1 will be omitted in the following 
notations. 

Defining the fluxes at cell faces as Fek=(hu)ekΔyek, 
Fwk=(hu)wkΔywk, Fnk=(hv)nkΔxnk and Fsk=(hv)skΔxsk, one can 
rewrite Equation (6) as 
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Integration of the x-momentum equation over the control 
volume shown in Figure 2 leads to 
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(8) 
 
where Su includes all the remaining terms. The convection terms 
can be discretized using several numerical schemes with 
upwinding capability, such as the hybrid upwind/central scheme 
(Spalding, 1972), exponential scheme (Spalding, 1972) and 
HLPA scheme (Zhu, 1991), while the diffusion terms are 
discretized using the central difference scheme. The hybrid 
scheme uses the first-order upwind or second-order central 
difference scheme depending on whether the Peclet number is 
larger than 2 or not. The exponential scheme uses the analytical 
solution of the linearized 1-D convection-diffusion equation to 
approximate the profile of the sought quantity between two 
neighboring cell centers; its accuracy is between first and second 
orders in general. The HLPA scheme uses a combination of 
linear and parabolic approximations for such profile, and it has 
second-order accuracy. Normally the HLPA scheme needs 
slightly more computational time and special treatments near a 
boundary and during the iteration because it uses more 
computational nodes. The details can be found in Wu (2007). In 
cases where higher accuracy is concerned, the HLPA scheme is 
a better option. However, for most of application cases, the 
exponential scheme is recommended because it uses about 10-
20% less computational time than the HLPA scheme and has 
enough accuracy. 

After the above manipulations, the x-momentum equation (8) 
reads 
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where aWk, aEk, aSk, aNk and aP are coefficients. Similarly, one 
can discretize the y-momentum equation as 
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COUPLING OF VELOCITY AND WATER LEVEL 
 

From the discretized momentum equation (9), one can derive 
the following equation for velocity 1n

Pu  : 
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where u

la  denotes the coefficients for u-equation, 
1 / u
ek P ek PD gh y a   and 1 / u

wk P wk PD gh y a  . Note that the first 

summation in Equation (11) is applied with the index, l, 
sweeping over all the neighboring cells of cell P, and the 
temporal term on the left-hand side of Equation (9) is arranged 
in Su and u

Pa  in Equation (11) as suggested by Patankar (1980).  

Equation (11) is used to compute the velocity for an assumed 
water level field in an iterative manner. Application of under-
relaxation (Majumdar, 1988) leads to 
 

 1 1
1 1 o

P u P ek ek wk wk u P
k k

u H D D u    
     

 
       (12) 

 
where   is the guessed water level, 

Pu  is the approximate 

solution of u-velocity, o
Pu  is the u-velocity in the previous 

iteration step, 
1PH   denotes the first term on the right-hand side 

of Equation (11) and αu is the relaxation factor that is set as 
about 0.8 in this study. 

There are several approaches to conduct the iteration and 
couple the flow velocity and water level, including the SIMPLE 
(Patankar and Spalding, 1972), SIMPLEC (van Doormaal and 
Raithby, 1984), and IDEAL (Sun et al., 2009) algorithms. The 
SIMPLEC algorithm is used here since it has been tested well 
for shallow water flow modeling (Wu, 2007). One can derive the 

relation between the water level and velocity corrections from 
Equation (12):  
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Equation (13), with 1

wkD  and 1
ekD  replaced by 1

wkD  and 1
ekD . 

Similarly, one can have the v-equation and the corresponding 
correction equation: 
 

 2 2
2 1 o

P v P nk nk sk sk v P
k k

v H D D v    
     

 
      (14) 

 

1 2 2n
P P v sk sk nk nk

k k

v v D D       
 
      (15) 

 

where 
2

v v
P l l v P

l

H a v S a  
  
 
 , 2 2 1 v v

nk nk v l P
l

D D a a
 

  
 

   

and 2 2 1 v v
sk sk v l P

l

D D a a
 

  
 

  , with 2 / v
nk P nk PD gh x a   and 

2 / v
sk P sk PD gh x a  . Here, αv is the relaxation factor for the v-

equation. 
It seems that the water surface elevation could be calculated 

from the discretized continuity equation (7), but in fact this 
might lead to spurious numerical oscillations for the collocated 
arrangement, as explained by Patankar (1980) and others. In 
order to avoid the checkerboard splitting for the collocated 
arrangement, we adopt the momentum interpolation technique 
proposed by Rhie and Chow (1983) to evaluate the variable 
values at cell faces from the quantities at cell centers. For 
example, the u-velocity at w-face and the v-velocity at s-face are 
determined as 

 

 
   

   
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, ,

0 0
, ,

1

1 / /

1 1
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u u
u x p PWk x p P wk wk Wk P

u x p Wk x p P

u f H f H

f a f a gh y

f u f u

  

 

    
      

     



  



  (16) 
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  

 
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
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(17) 
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and the corresponding velocity corrections as 

 1 1n
wk wk u wk Wk Pu u Q           (18) 

 1 2n
sk sk v sk Sk Pv v Q           (19) 

 
where  

1
, ,

, ,

(1 ) / /

1 (1 )

u u
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u u u u
u x p l P u x p l P

l lWk P

Q f a f a gh y

f a a f a a

     
    
      

    
 



 
   

and  

2
, ,

, ,

(1 ) / /

1 (1 )

v v
sk y p PSk y p Pk sk sk

v v v v
v y p l P v y p l P

l lSk P

Q f a f a gh x

f a a f a a

     
    
      

    
 



  ,
 

in which 
,x pf  and 

,y pf  are the weighting factors used to 

interpolate the values of a variable at cell faces w and s from the 
values at two adjoining cell centers P and W or P and S, 
respectively; u

PWa  and v
PSa   stand for u

Pa  and v
Pa

 

when applying 

Equations (9) and (10) on the cells centered by W and S, 
respectively. 

With the definition of fluxes at cell faces and Equations (18) 
and (19), one can derive the flux corrections at w and s faces: 

 

 wk wk Wk Wk PF F a          (20) 

 sk sk Sk Sk PF F a            (21) 

 
where 1

Wk u wk wk wka Q h y   , 2
Sk v sk sk ska Q h y    and 

wF   and 
sF   

are the fluxes at faces w and s in terms of the velocities 
wu  and 

sv  evaluated using the Rhie and Chow’s momentum 

interpolation method. 
Inserting Equations (20) and (21) into (7) leads to the 

following equation for water level correction: 

 
P P Ek Ek Wk Wk Nk Nk Sk Sk

k k k k

a a a a a S               
       (22) 

where 
P l P

l

a a A t     , and 

 n
P P P ek wk nk sk

k k k k

S A t F F F F     
         

 
      . 

 
SOLUTION OF DISCRETIZED EQUATIONS 

 
Because the dicretized equations are non-linear, they need to 

be solved iteratively. The iteration process consists of inner and 

outer iteration loops. The inner iteration is designed for solving 
each of the discretized momentum equations (12) and (14) and 
the water-level-correction equation (22) with an iteration solver 
as discussed in the next paragraphs. The outer iteration loop 
visits the u, v and η' equations in the following sequence in each 
time step as required by the SIMPLEC algorithm:  

 
(1) Guess the water level field  ; 

(2) Solve the momentum equations (12) and (14) to obtain 

Pu  and 
Pv  ; 

(3) Use the Rhie and Chow’s momentum interpolation to 
determine the velocities and fluxes at cell faces; 

(4) Calculate   using Equation (22); 

(5) Correct η by      , and update uP and vP using 

Equations (13) and (15) and fluxes using Equations 
(20) and (21); 

(6) Treat the corrected water level, η, as a new guess,  , 

and repeat the procedure from steps 2 to 6 until a 
converged solution is obtained. 
 

Because the cells on the quadtree mesh are numbered in an 
unstructured form, the coefficient matrices in the discretized 
momentum equations and the water-level-correction equation 
are sparse. Selection of iterative solution solvers for these 
algebraic equations is the key issue concerning the overall 
performance of the model. After a lot of testing, we have chosen 
a variant of the GMRES (generalized minimum residual) 
method (Saad, 1993) to solve the algebraic equations. The 
original GMRES method (Saad and Schultz, 1986) uses the 
Arnoldi process to reduce the coefficient matrix to the 
Hessenburg form and minimizes at every step the norm of the 
residual vector over a Krylov subspace. The variant of the 
GMRES method recommended by Saad (1993) allows changes 
in the preconditioning at every iteration step. We use the ILUT 
(Incomplete LU Factorization; Saad, 1994) as the preconditioner 
to speed up the convergence. The details of this iteration solver 
can be found in the above references.  

Because the solution of each of the variables u, v and η' needs 
the updated intermediate values of other variables, it is not 
necessary to reach a convergent solution in each inner iteration. 
However, an approximately convergent solution for the η' 
equation (22) will ensure mass conservation at each iteration 
step. It is a good practice to set more iteration steps when 
solving Equation (22). The optimal inner and outer iteration step 
numbers are related to the iterative solution method, mesh size 
and nature of the problem. For most cases with mesh of less than 
100,000 cells, if the GMRES method is used, 5, 5 and 10 inner 
iteration steps have been found to be good choice for Equations 
(12), (14) and (22), respectively, and 20 outer iteration steps are 
usually enough.  
 

WETTING AND DRYING TECHNIQUES 
 

In the numerical simulation of surface water flows with 
sloped beaches, barriers, spits and islands, the water edges 
change with time, with part of the nodes being possibly wet or 
dry. In the present model, a threshold flow depth (a small value 
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such as 0.02 m in field cases) is used to judge drying and 
wetting. If the flow depth on a node is larger than the threshold 
value, this node is considered to be wet, and if the flow depth is 
lower than the threshold value, this node is dry. Because a fully 
implicit solver is used in the present model, all the wet and dry 
nodes participate in the solution. Dry nodes are assigned a zero 
velocity. On the water edges between the dry and wet nodes, the 
wall-function approach is applied.  

 
MODEL TESTING 

 
The developed model has been recently enhanced to take into 

account the wave/current interactions and to simulate sediment 
transport and morphology changes. It has been tested 
extensively in many laboratory and field cases. Because the 
main focus of this paper is the flow solver, only three test cases 
are presented here. The first case is a steady flow around a spur-
dyke in a laboratory flume. This case is designed to verify the 
developed numerical algorithms based on quadtree meshes. The 
second and third cases are the tidal flows in estuaries, through 
which the stability, efficiency and reliability of the model for 
unsteady flows are quantitatively validated. 
 
Case 1: Steady Flow around a Spur-Dyke 
 

The developed model has been tested using the measured data 
of Rajaratnam and Nwachukwu (1983) for the steady flow 
around a spur-dyke in a straight tilting rectangular flume. The 
flume was 37 m long and 0.92 m wide. The experimental run A1 
is simulated here, in which the flume bed and walls were 
smooth, the spur-dyke was a thin aluminum plate of 0.152 m in 
length, the flow discharge was 0.0453 m3/s, and the approach 
flow depth was 0.189 m.  

To check whether the model results depend on the 
computational mesh, simulations are carried out using two 
quadtree meshes and a uniform mesh. The two quadtree meshes 
around the spur-dyke are shown in Figure 3, and both consist of 
three-level refinements near the spur-dyke. The finest grids 
cover the entire recirculation zone in quadtree mesh A, but only 
the region near the spur-dyke in quadtree mesh B. The finest 
grid spacing near the spur-dyke in both quadtree meshes is about 
0.01 m in x and y directions. For comparison, a uniform mesh 
with this fine resolution covering the entire computational 
domain is also tested. The number of cells in the uniform mesh, 
quadtree mesh A and B is 57120, 19335, and 6482, respectively. 
All model parameters are set the same for the three simulation 
runs. The modified mixing-length turbulence model is used here, 
with the coefficient cm calibrated as 0.3. The Manning’s n is set 
as 0.012.  

Figure 4 shows the flow patterns calculated using the 
developed model with the three meshes. For better view, certain 
points are skipped on the plots. One can see that the 
recirculation and main flow patterns simulated using the three 
meshes are quite similar. The recirculation zone simulated using 
quadtree mesh B is slightly shorter than those using the uniform 
mesh and quadtree mesh A. Figure 5 compares the measured 
and calculated depth-averaged flow velocities in cross-sections 
located at x/b=2, 4, 6 and 8. Here, b is the length of the spur-
dyke. The model reasonably predicts the main and recirculation 

flows around the spur-dyke. The velocity profiles along these 
cross-sections among the three simulations have only very little 
difference. This indicates that the quadtree mesh technology is 
cost-effective. It has been observed that the sharp velocity 
gradients at the edge between the main and recirculation flow 
zones are under-predicted in all three runs. This is due to the 
zero-order turbulence model used. In order to capture such 
velocity gradients, a higher-order turbulence closure such as the 
k-ε turbulence model is preferred (Wu et al., 2004).  
 

 

 
 
Figure 3. Meshes near a spur-dyke in a straight flume: (a) Quadtree 
mesh A and (b) Quadtree mesh B (Circles: locations of cell centers).

 

 

 
 
Figure 4. Calculated flow patterns near the spur-dyke using (a) Uniform 
mesh, (b) Quadtree mesh A, and (c) Quadtree mesh B.
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Figure 5. Comparison of measured and simulated flow velocities at 
selected cross-sections. 

 
 

Figures 6 and 7 show the contours of velocity magnitude and 
water surface elevation simulated using quadtree mesh B. The 
recirculation flows cover several levels of refined mesh, and the 
transition between flows on fine and coarse grids is very 
smooth.  This demonstrates that the numerical discretization and 
solution methods in the developed model are adequate to handle 
the unstructured quadtree mesh. 
 

 

 
 
Figure 6. Calculated velocity contours. 

 
 
Case 2: Tidal Flow in Gironde Estuary 
 
The Gironde Estuary is located in southwestern France. It 
receives runoff from the Garonne River and the Dordogne River 
and empties into the Atlantic Ocean (Figure 8). The water-
surface width varies from 2 to 14 km, and the flow depth in the 
navigation channels is about 6 – 30 m. The estuary is partially 

 

 
 
Figure 7. Calculated water level contours. 

 
 
mixed and macrotidal, with a 12 hour and 25 minutes tidal lunar 
period and a tidal amplitude of 1.5–5 m at the mouth (Li et al., 
1994). The simulation domain is about 80 km long, starting from 
the mouth to the Garonne River and the Dordogne River.  

The bed topography was provided on a uniform mesh, with a 
size of 250 m × 125 m for each cell. Considering the domain is 
relatively simple, the uniform mesh for the topography is used 
here as the computational mesh. It is treated as the simplest 
quadtree mesh, so that the developed model can handle it 
straightforwardly. The data measured from May 19 to 25, 1975 
is used to validate the model. The computational time step is 30 
minutes. At the estuary mouth, the tidal elevation is given by the 
recorded time series at the station “Pointe de Grave”. At the two 
upstream ends, the flow discharges of the Garonne River and the 
Dordogne River are specified according to the measured data at 
La Réole and Pessac. The Manning’s n is set as 0.015. The 
modified mixing-length model is used here, with the coefficient 
cm set as 1.2.  
 

 

 
 
Figure 8. Sketch of Gironde Estuary, France. 
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The flow fields in flood and ebb tides are reasonably well 
predicted, as shown in Figure 9. Figure 10 compares the 
measured and simulated water levels at stations Ile Verte and 
Richard. The amplitude and phase are well predicted by the 
numerical  model.  No  obvious  phase difference exists between 
the measured and simulated tidal levels. Figure 11 shows the 
comparison of the measured and simulated flow velocities at 
stations Pauillac and Richard. The measured flow velocities are 
1 m under the water surface and 1 m above the river bed, 
respectively. The simulated depth-averaged flow velocity stays 
between them. The agreement is reasonably good.  
 

 

 
 
Figure 9. Simulated flow patterns in Gironde Estuary. 

 
 
 

 

 
 
Figure 10. Measured and simulated water levels at selected stations in 
Gironde Estuary. 

 
 
 

 

 
 
Figure 11. Measured and simulated velocities at selected stations in 
Gironde Estuary. 

 

Case 3: Tidal Flow in Grays Harbor 
 

Grays Harbor is located on the southwest Washington coast, 
USA, at the mouth of the Chehalis River. The estuary is one of 
the largest in the continental United States. As part of the U. S. 
Army Corps of Engineers Grays Harbor Estuary Physical 
Dynamics Study, current and waves were measured during 
September  to  November of 1999  (Osborne et al., 2003).  
Figure 12 shows the plan view of the harbor and the deployed 
measurement stations. Figure 13 shows part of the quadtree 
mesh near the entrance of Grays Harbor. The mesh is refined 
around the jetties and near the channels, and consists of 96,100 
cells. The finest grid spacing is 25 m near the jetties and the 
coarsest one is 800 m near the offshore boundary at deep water. 
The  computational  time  step  is  30 min.  The  measured  water 
levels from the station nearest to the offshore boundary are used 
as the boundary condition. The wave radiation stresses 
calculated by the CMS-Wave model are considered in the 
simulation of current.  

 

 

 
 
Figure 12. Measurement stations deployed in Grays Harbor in 
September 1999. 

 
 

 

 
 
Figure 13. Computational mesh near the entrance of Grays Harbor (Dots 
indicate cell center locations and lines are bed elevation contours). 
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Figure 14 shows the simulated streamlines during ebb tide 
near the entrance of Grays Harbor. One can see the streamlines 
smoothly pass through coarse and fine mesh zones. Figure 15 
shows the simulated wetting and drying processes on the 
floodplain in the northeast corner of the bay due to tide change. 
Part of the nodes are wetted during flood tide but become dry 
during ebb tide. This demonstrates that the model handles 
wetting and drying efficiently. Figure 16 compares the 
computed and measured water levels at Stations 4 and 5, and 
Figure 17 compares the computed and measured current speeds 
at Stations 2 and 3 for a period of six days in the late September 
of 1999. The model has reproduced the tidal water level and 
current speed reasonably well.  
 

 

 
 
Figure 14. Simulated streamlines during ebb tide near the entrance of 
Grays Harbor (Background is bed elevation contours). 

 
 

CONCLUSIONS 
 

An implicit finite volume scheme with several advanced 
techniques well proven in CFD has been applied to solve the 
depth-averaged 2-D shallow water flow equations to improve 
the computational efficiency of the existing CMS flow model. 
This new  model  uses  an  unstructured  multiple-level  quadtree 
(telescoping) rectangular mesh, which can locally refine the 
mesh around structures or in high-gradient regions and thus 
improve the accuracy of the model with a relatively small 
increase in number of cells. The grid points are numbered by 
means of an unstructured index system, so that the mesh can be 
flexible while it has the merits of the traditional rectangular 
mesh. The model uses the non-staggered (collocated) system, in 
which primary variables u-, v-velocity, and water level are 
stored on the same set of grid points, so that the interface 
between fine and coarse cells can be easily handled. 

The convective terms in the momentum equations are 
discretized using one of several upwinding schemes, including 
the hybrid upwind/central difference, exponential difference and 
HLPA schemes. The HLPA scheme has second order accuracy 
in space, while the other two schemes have the accuracy 
between first and second orders. The SIMPLEC algorithm with 
under-relaxation is used to handle the coupling of water level 
and velocity and achieve high numerical stability and efficiency. 
Fluxes at cell faces are determined using the Rhie and Chow’s  

 

 

 
 
Figure 15. Floodplain wetting and drying due to tide. 

 
 
momentum interpolation method, which eliminates spurious 
oscillations existing on non-staggered grid that can occur with 
linear interpolation. 

Because the mesh is unstructured, the discretized algebraic 
equations have sparse matrices of coefficients. These equations 
are solved iteratively using the flexible GMRES method with 
ILUT preconditioning, which is efficient for solving such 
algebraic equations (Saad, 1993).  

The first test case presented in this paper has demonstrated 
that the developed numerical algorithms handle quadtree meshes 
well and the simulated flow structures transit continuously 
between coarse and fine cells. The second and third test cases 
were used to test the developed model’s robustness and 
reliability, showing that a time step of about a half hour can be 
used in simulation of tidal flow with a 12-hr period and the 
simulated tidal levels and velocities are in good agreement with 
the measured data. The model is able to handle the wetting and 
drying problem well and has the potential to be used in 
simulation of long-term processes near coastal inlets. 
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Figure 16. Measured vs. computed water surface elevations at Stations 4 and 5. 

 
 
 

 

 
 
Figure 17. Measured vs. computed current speeds at Stations 2 and 3. 
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APPENDIX: NOTATIONS 

 
aWk, aEk, aSk, aNk, aP = coefficients in discretized equations 

u
ka , v

ka , 
ka  = coefficients for u-, v- and  equations 

cm = empirical coefficient for eddy viscosity  
fc = Coriolis force coefficient 
fx,p, fy,p = weighting factors for interpolation 
Fek, Fwk, Fnk, Fsk = fluxes at cell faces 
g = gravitational acceleration 
h = total flow depth 
n = Manning’s roughness coefficient 
S = source term 
t = time  
u, v = depth-averaged flow velocities in x- and y-directions 
u* = bed shear velocity 
x, y = horizontal coordinates  
αu , αv = relaxation factors 
ΔAP = area of the control volume at node P 
Δt = time step length 
Δx, Δy = lengths of cell face 
η = water level  
  = water level correction 

νt = eddy viscosity 
ρ = flow density 
bx, by = bed shear stresses  
subscript k = index of the faces at each side 
subscript l = index of neighboring cells 
subscripts w, e, s, n = west, east, south, north sides of cell  
subscripts W, E, S, N = west, east, south, north adjacent nodes  
superscript n = time step index 
superscript o = value of previous iteration step 
superscript * = guessed or approximate value 
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