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ABSTRACT 
 
A numerical model is developed to simulate waves 
generated by high-speed vessels traveling at sub-
critical, transcritical and supercritical speeds in shallow 
water over water of varying depth. The waves in the 
far field are assumed to be weakly dispersive with 
wavelengths much longer than the water depth. The 
vertical profile of the flow field is obtained from a 
second-order Taylor series expansion of the velocity 
potential about an arbitrary elevation in the water 
column. The velocity potential in the region near the 
ship is decomposed into a far-field potential, that is 
valid throughout the computational domain, and a local 
near-field body potential that decays rapidly away from 
the body. The boundary integral method is used to 
solve for the near-field body potential. The formulation 
leads to a fully nonlinear set of Boussinesq-type water 
wave evolution equations with forcing terms from the 
boundary integral of a source distribution over the 
body surface in the near field. An eddy viscosity-based 
formulation is used to simulate energy dissipation due 
to wave breaking. The resulting system of evolution 
equations are integrated in time using a finite 
difference method. Numerical model predictions are 
compared with data from laboratory experiments on 
ship-generated waves over a wide range of depth-based 
Froude numbers (0.7 < Fh < 2) in both wide and 
narrow channels. 
 
INTRODUCTION 

 
With the increasing use of high-speed vessels for ferry 
operations in shallow and confined waters, there has 
been growing concern about the impact of waves 
generated by such vessels on the marine environment. 
High-speed vessels are capable of operating at speeds 
of 35 to 45 knots, compared to 10 to 20 knots for 

conventional vessels. Two critical parameters that 
govern the wake pattern of moving vessels in shallow 
waterways are the depth–based Froude number, Fh, 
which expresses the ratio of the vessel speed to the 
maximum wave propagation speed in a given water 
depth, and the blockage ratio, Br, which is the ratio of 
the maximum cross-sectional area of the ship to the 
channel cross-sectional area. Most of the reported 
problems with high-speed vessels occur in shallow and 
confined channels where the bottom topography and 
lateral boundaries significantly modify the ship-
induced wave field. 

High-speed vessels tend to operate in the 
transcritical (Fh ≈ 1) and supercritical (Fh > 1) regimes 
in coastal waters, in contrast to conventional vessels 
that typically operate at sub-critical (Fh < 1) speeds. 
Vessels traveling at trans-critical and supercritical 
speeds in narrow confined channels can generate non-
dispersive solitary-type waves and turbulent bores that 
can propagate over large distances. The formation of 
bores and solitary-type waves becomes less likely as 
the channel becomes wider. However, the super-
critical wake pattern in wide channels includes long 
period [O(10s)] waves at the leading edge of the wake. 
The long-period waves could pose a problem in 
sheltered waterways not typically exposed to long 
period wind-generated waves. These swell-type waves, 
which are barely visible in deep water, can be 
amplified and focused by bathymetric features in 
shallow water. 

A number of numerical models have been 
developed to predict the wave field generated by 
moving vessels. These models can be loosely classified 
into near-field models, which resolve details of the 
flow field near the ship but are too computationally 
intensive to extend to regions far away from the ship, 
and far-field models, which simulate the propagation 
and transformation of ship-generated waves at large 



 

distances away from the ship but have a poorer 
description of the flow near the ship. Most near-field 
models are based on boundary integral equations 
derived from Green’s theorem, where the velocity 
potential associated with the fluid and body motions is 
represented by a distribution of point sources over the 
immersed body surface and free surface (e.g. Beck et 
al., 1993). Near-field models can be computational 
intensive if applied over large coastal areas where the 
seabed has to be discretized in addition to free surface 
and ship hull. 

Far-field models solve water wave evolution 
equations derived by integrating the governing mass 
and momentum equations over the water depth. For 
weakly dispersive waves, the vertical profile of the 
flow field is obtained by expanding the velocity 
potential, as a Taylor series about an arbitrary elevation 
in the water column (e.g. Nwogu, 1993). The 
governing equations are then integrated over the water 
depth, reducing the three-dimensional problem to a 
two-dimensional one. Depth-integrated equations 
represent a computationally efficient tool for 
simulating the propagation and transformation of 
nonlinear waves over large areas. The equations are 
able to describe the transformation of waves due to 
effects such as shoaling/refraction over variable 
topography, diffraction/reflection by coastal structures, 
nonlinear wave-wave interactions, wave breaking and 
wave-induced currents in the surf zone.  

Several investigators have extended weakly 
dispersive far-field (Boussinesq) models to simulate 
ship generated waves. Early work in the 1980s used 
Boussinesq models to investigate the generation of 
upstream-propagating solitary waves. Ertekin et al. 
(1986), and Wu (1987), both used a moving pressure 
distribution on the free surface to simulate the effect of 
a moving ship. The applied pressure distribution, 
however, does not satisfy the kinematic boundary 
condition on the ship hull and there is no explicit 
relationship between the pressure distribution and body 
boundary condition.  

For slender bodies, a different approach to 
satisfying the body boundary condition is the method 
of matched asymptotic expansions, in which the 
boundary condition for the far-field problem is derived 
from an asymptotic solution of the near-field problem. 
This technique was initially used by Tuck (1966) to 
predict the flow field induced by slender ships in 
shallow water. The ship is represented by a moving 
distribution of point sources placed along the ship’s 
centerline. Tuck’s (1966) solution represents the 
leading order slender body solution in which the free 
surface is replaced by a rigid lid in the near field. The 
outer solution of near-field problem thus represents a 
depth-uniform streaming flow between two rigid 
horizontal boundaries, consistent with the use of the 

depth-uniform shallow water equations in the far field. 
To model weakly dispersive waves in the far-field, 
Tuck’s asymptotic expansion method would have to be 
extended to higher orders to be consistent with the 
second-order Boussinesq expansion in the far-field for 
dispersive waves.  

In this paper, we adopt a different approach to 
satisfying the body boundary condition while 
maintaining the computational efficiency of depth-
integrated Boussinesq-type models. Instead of 
asymptotically expanding the near-field solution, we 
directly couple the Boussinesq equations in the far 
field with a 3-D near-field boundary integral solution 
that satisfies the boundary conditions on the immersed 
body surface. The time-dependent evolution of the free 
surface elevation in the near field is still governed by 
the Boussinesq equations with the boundary-integral 
solution providing a forcing term. The numerical 
model is validated with two sets of data from 
laboratory experiments conducted over a wide range of 
depth-based Froude numbers in the sub-critical, trans-
critical and supercritical regimes in both a wide and 
narrow channel. 
 
THEORETICAL FORMULATION 
 
Consider a ship moving at speed U in a navigation 
channel of variable water depth, h. A fixed Cartesian 
coordinate system is adopted with (x,y) the horizontal 
plane at the still water level and z measured vertically 
upwards. The fluid is assumed to be incompressible 
and inviscid with the fluid motion described by a 
velocity potential, Φ(x,y,z,t). The fluid has to satisfy 
the continuity (Laplace) equation in the bounded fluid 
volume, V, subject to boundary conditions at the free 
surface, seabed and body surface, SB: 
 

2 0 in zz V∇ Φ+Φ =                       (1) 
 

0            at t z zη η η+∇Φ⋅∇ −Φ = =                   (2) 
 

( )21 0 at 
2t zg zη ηΦ + + ∇Φ ⋅∇Φ +Φ = =                   (3) 

 
0                at zh z h∇Φ⋅∇ +Φ = = −                 (4) 

 
on z z Bn S∇Φ⋅ +Φ = ⋅n U n                                          (5) 

   
where (n,nz) is the unit outward normal vector to the 
body surface and ∇=(∂/∂x,∂/∂y). The lateral boundaries 
of the computational domain are assumed to be fully 
reflecting with outgoing waves absorbed in damping 
layers placed next to the wall boundaries. To solve the 
initial/boundary problem, we divide the computational 
domain into two regions: the near-field region close to 



 

the ship and the far-field region, far away from the 
ship. 
 
Far-Field Solution 
 
Since we are primarily interested in ship-generated 
waves in shallow water, we assume that that the waves 
in the far field are weakly dispersive. The vertical 
structure of the flow field in the far field is thus 
obtained by expanding the velocity potential, Φ, as a 
Taylor series about an arbitrary elevation, zα, in the 
water column (Nwogu, 1993). This corresponds to an 
asymptotic expansion of the velocity field in terms of a 
frequency dispersion parameter, μ = h/L (where L is 
the wavelength). The zeroth order approximation 
corresponds to non-dispersive shallow water waves 
while the second-order [O(μ2)] expansion corresponds 
to weakly dispersive waves with a quadratic variation 
of the velocity potential over depth: 
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where φα = Φ(x,zα,t). The above expansion satisfies the 
Laplace equation (Eqn. 1) and the seabed boundary 
condition (Eqn. 4). The horizontal and vertical 
velocities are obtained from the velocity potential as: 
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[ ]( , , ) ( )w z t h z hα α= − ⋅∇ + + ∇ ⋅x u u                       (8) 

 
where uα = ∇Φ|zα

 is the horizontal velocity at z = zα. 
Given a vertical profile for the flow field, the mass and 
momentum equations can be integrated over depth, 
reducing the three-dimensional problem to a two-
dimensional one. The mass conservation equation is 
obtained by integrating the Laplace equation (Eqn. 1) 
over the water depth and applying the kinematic 
boundary conditions at the seabed and free surface to 
yield: 
 

( ) 0tη h η⎡ ⎤+ ∇ ⋅ + =⎣ ⎦u                                       (9) 

 
where u  is the depth-averaged horizontal velocity 
given by: 
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The horizontal gradient of the dynamic free surface 
boundary condition (Eqn. 3) can be written as: 
 

( ) 0t tw g w wη η η ηη η
η η+ ∇ + ∇ + ⋅∇ + ∇ =u u u       (11) 

 
where uη = u(x,η,t), wη = w(x,η,t) are the horizontal 
and vertical velocities at the free surface. By 
substituting equations (7) and (8) into (11), we obtain 
the momentum equation as evolution equation for the 
horizontal velocity variable uα : 
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        (12) 

 
where ub = u(x,-h,t) is the horizontal velocity at the 
seabed. The equations also include empirical terms to 
account for wave energy dissipation due to bottom 
friction and turbulent processes, with fb an empirical 
bottom friction coefficient and ν an eddy viscosity 
coefficient. A Smagorinsky-type formulation is 
adopted for sub-grid turbulent processes with the eddy 
viscosity coefficient proportional to the velocity 
gradients and the grid size, i.e.: 

( ) ( ) ( )
1/ 2

2 222
, , , ,

1
2s x y y xC x y u v u vα α α αν ⎡ ⎤= Δ Δ + + +⎢ ⎥⎣ ⎦

 (13) 

where Cs is the Smagorinsky constant. The eddy 
viscosity term is also used to describe energy 
dissipation due to wave breaking.  

The elevation of the velocity variable zα is a free 
parameter that is chosen to minimize differences 
between the linear dispersion characteristics of system 
of equations and the exact dispersion relation for small 
amplitude waves and is given by zα = -0.535h (Nwogu, 
1993). 
 
 
 
 



 

Near-Field Solution 
 
To provide a seamless transition between the near-field 
and far-field problems, we decompose the total 
velocity potential in the near field into the far-field 
potential given by equation (6) and a near-field body 
potential, Φ(B), which represents a perturbation to the 
far-field potential due to the presence of the body: 
 

( ) ( )B FΦ = Φ +Φ                                                         (14) 
 
The above decomposition automatically imposes the 
boundary condition: 
 

( ) ( ), 0 as B B
z∇Φ Φ → →∞x                                         (15) 

 
at the matching boundary between the near-field and 
far-field regions. The total velocity potential in the 
near-field has to satisfy the Laplace equation and the 
boundary conditions given by equation (2) to (5):  
 

2 ( ) ( ) 0                                      inB B
zz V∇ Φ +Φ =      (16) 

 
( ) ( ) ( ) ( )  at F F B B

t z z zη η η η+∇Φ ⋅∇ −Φ = Φ −∇Φ ⋅∇ =   (17) 
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( ) ( ) ( ) ( )   at F F B B

z zh h z h∇Φ ⋅∇ +Φ = −∇Φ ⋅∇ −Φ = −  (19) 
 

( )
( )

( ) ( ) on 
B

F F
z z Bn S

n
∂Φ
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∂
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The solution of the initial-boundary value problem for 
the body potential Φ(B) can be obtained by integrating 
the kinematic and dynamic free surface boundary 
conditions (Eqns. 17 & 18) in time, and using the 
boundary integral method to solve the Laplace 
equation to close the system of equations at each time 
step (e.g. Beck et al., 1993). However, we choose to 
solve a simplified form of the body potential problem. 
We avoid solving the time-dependent momentum 
equation (Eqn. 18) for the body potential at the free 
surface by imposing the boundary condition: 

 
( )  = 0          at  = 0B zΦ                                               (21) 

 
Since Φ(B) represents a perturbation to Φ(F) in the  near 
field, the boundary condition is applied at z = 0 instead 
of z = η. We also assume that the water depth is 
uniform in the near-field region and replace Eqn. (19) 
with: 

 
( ) = 0          at  = B
z z hΦ −                                           (22) 

 
At any instant of time, the solution of Eqn. (16) subject 
to boundary conditions (15), (20), (21) and (22) can be 
obtained using a boundary integral of sources on the 
immersed body surface: 
 

( ) ( , ) = ( , ) ( , ; , )           
B

B

S

z z G z z dSσ ′ ′ ′ ′Φ ∫x x x x            (23) 

 
where G(x,z;x’,z’) a Green’s function that satisfies the 
Laplace equation and boundary conditions at the free 
surface (21), seabed (22) and radiation boundary (15),  
σ(x’,z’) are the unknown source strengths, (x,z) is the 
field point at which the velocity potential is evaluated 
and (x’,z’) is the source location. The Green’s function 
is given by the method of images as: 
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where 
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The strengths of the sources are determined to satisfy 
the boundary condition (Eqn. 20) on the body surface. 
Evaluating the normal derivative of (23) on SB yields: 
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     (26) 

 
The above integral equation is solved using the 
constant panel method. The ship hull is discretized into 
a finite number of panels with the source strength 
distribution assumed to be uniform over each panel. 
The kinematic body boundary condition is then applied 
at the centroid of each panel to yield a matrix equation 
for the unknown source strengths. For slender ships, 
the matrix is diagonally dominant and the source 
strengths can be approximated by: 
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The modified kinematic free surface boundary in the 
near field is obtained by substituting the vertical 
velocity associated with sources into Eqn. (17): 
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By integrating the Laplace equation over the water 
depth and applying the kinematic boundary conditions 
at the free surface and seabed, we obtain a modified 
depth-integrated mass conservation equation for the 
near-field region as: 
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The numerical solution of the near-field problem has 
thus been reduced to solving a coupled set of 
Boussinesq-type mass and momentum equations (Eqns. 
12 & 30) with a forcing term in the mass equation due 
to the source distribution over the body surface. For 
slender bodies, the source strength is proportional to 
the relative normal velocity on the body. For 
arbitrarily-shaped bodies, a matrix equation would 
have to be solved for the unknown source strengths.  

The present formulation can be considered 
equivalent to representing a moving three-dimensional 
body in the far-field Boussinesq model with a spatial 
distribution of the vertical velocities induced by the 
motion of the ship. A vertical velocity boundary 
condition is thus applied at the still water level over a 
limited region near the ship in contrast to the classical 
matched-asymptotic slender-body approach of Tuck 
(1966), where the ship is shrunk to a line and a 
horizontal velocity boundary condition is applied along 
the ship’s centerline. 

Although the Green’s function is represented by 
an infinite series, the influence of the image sources 
decrease with increasing distance from the still water 
level and the series can be truncated after a finite 
number of terms. Since the source-induced vertical 
velocities are proportional to z’/r3, one practical 

guideline adopted in this paper is to truncate the series 
when the ratio of the vertical velocity induced the by 
the image sources is less than 1% of that induced by 
the primary source. For a vessel with draft, D, this 
would correspond to image sources located within 
±10D of the still water level. Shallow-draft vessels 
with drafts less than 10% of the water depth can thus 
be effectively represented by the primary source and its 
image sink above the still water level. 
 
Wave Breaking 
 

Waves generated by high-speed vessels tend to 
break around the hull. The effect of wave breaking has 
been parameterized in the momentum equation (Eqn. 
12) with an artificial eddy viscosity term. This term is 
designed to reproduce the overall wave energy 
dissipation due to breaking but not details of the 
turbulent motion. A conceptual breaking model is still 
required to define the onset of breaking and the post-
breaking spatial and temporal evolution of the eddy 
viscosity. In this paper, we adopt the approach of 
Nwogu (1996) for spilling breaking waves that is 
based on the one-equation turbulence closure model 
used for the Navier-Stokes equations. The eddy 
viscosity coefficient ν is related to the kinetic energy of 
the large-scale eddy motions, k, and an eddy length 
scale, l, by:  

 
klν =                                                                     (31) 

 
A one-dimensional transport equation is used to describe 
the production, advection, diffusion, and dissipation of 
the eddy kinetic energy: 
 

2
tk k P D kη σν+ ⋅∇ = − + ∇u                      (32) 

 
where σ is an empirical diffusion constant, and P and 
D are terms for the production and dissipation of eddy 
kinetic energy respectively. The breaking model 
assumes that eddies are generated in the near-surface 
region and primarily advected with the horizontal 
velocity at the free surface. The rate of production of 
the eddy kinetic energy is assumed to be proportional 
to the vertical gradient of the velocity at the free 
surface, i.e.:  
 

2 3/ 2

, ,z z
D

lP B
C η η⎡ ⎤= ⋅⎣ ⎦u u                                           (33) 

 
where CD is an empirical constant and the velocity 
gradient uz,η is given by: 
 

[ ] ( ), ( ) ( ) ( )z h h hη α α αη= − ∇ ⋅∇ + ∇⋅ ∇ − + ∇ ∇⋅u u u u (34) 



 

The parameter B is introduced to ensure that eddy 
generation occurs after the waves break. Nwogu 
(1996) used a breaking criterion based on the ratio of 
the horizontal component of the orbital velocity at the 
free surface, uη, to the phase velocity of the waves, C. 
For supercritical bores in narrow channels, a Froude-
number based criterion appears to be more relevant 
(e.g. Gourlay, 2001):  
 

0                ( ) 1.265

1          ( ) 1.265

g h gh
B

g h gh

η

η

⎧ + <⎪= ⎨
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                (34) 

 
The last unknown term in the breaking model is the 
rate of dissipation of eddy kinetic energy. We assume 
that it follows the standard 3/2 decay law, i.e.: 
 

3/ 2

D
kD C

l
=                                                             (35) 

 
The following values were adopted for the empirical 
constants: CD = 0.08 and σ = 0.2, as recommended by 
Nwogu (1996). The eddy length scale, l, remains the 
only free parameter in the breaking model and it is 
typically chosen to be of the order of the wave height. 
 
NUMERICAL SOLUTION 
 
The computational domain represents a numerical 
towing tank and is discretized as a uniform rectangular 
grid with grid sizes Δx and Δy, in the x and y 
directions, respectively.  The prognostic variables η 
and uα are defined at the grid points in a staggered 
manner with the surface elevation defined at the grid 
nodes while the velocities are defined half a grid point 
on either side of the elevation grid points. The 
governing mass and momentum equations are 
integrated in time using a modified third-order accurate 
Crank-Nicholson scheme (Nwogu, 1993). The partial 
derivatives are approximated using a forward 
difference scheme for time and central difference 
schemes for the spatial derivatives. Details of the 
numerical scheme are provided in Nwogu and 
Demirbilek (2001). 

At each time step, we solve an algebraic 
expression for the change in η at all grid points and tri-
diagonal matrix equations for changes to uα and vα 
along lines in the x and y directions, respectively. 
Identical mass and momentum equations are solved in 
both the near and far fields with the additional 
contribution of the boundary integral of the source 
distribution over the body surface due to the motion of 
the ship evaluated over a limited spatial region, defined 
to be half a ship length for all the simulations in this 
paper. A linear interpolation scheme is used to evaluate 

the far-field fluid velocities at the centroids of the 
panels. The ship is then moved to its new position at 
the next time step and the calculations repeated at the 
next time step.  

Waves propagating out of the computational 
domain can be optionally absorbed in damping regions 
placed around the perimeter of the computational 
domain. Artificial dissipation of wave energy in 
damping layers is achieved through the introduction of 
a term proportional to the surface elevation into the 
right-hand side of the mass equation: 
 

( )dF η μ η= − x                                                 (36) 
 
and a term proportional tangential velocity at the free 
surface into the right-hand side of the momentum 
equation: 
 

( )( )duF wη ημ η= − + ∇x u                                         (37) 

 
where μ(x) is the damping strength with that varies 
quadratically within the damping layer with a 
maximum value of 30/T at the wall boundary, where T 
is a characteristic wave period. 
 
LABORATORY EXPERIMENTS IN A WIDE 
BASIN 
 
Doctors (2003) carried out an extensive series of 
laboratory experiments in a wide basin to investigate 
the wavemaking characteristics of a model catamaran. 
The experiments were conducted in the model basin of 
the Australian Maritime College. The basin is 35 m 
long, 12 m wide and can support water depths up to 
1m. 
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Figure 1: Layout of laboratory experiments of Doctors 
(2003) 
 
A model catamaran was built from a modified Series 
64 high-speed displacement parent hull form (Yeh, 
1965) with a transom stern. The hulls were each 1.5 m 
long with a beam of 0.1113 m, draft of 0.04623 m and 
block coefficient of 0.49. The model was towed along 
the centerline of the basin (y = 6m) as shown in Figure 
1. Eight probes were used to measure the water surface 
elevation along a transect at x = 17.5m. The probes 



 

were uniformly spaced at an interval of 0.5 m with 
Probe #1 located at y = 5m (or 1 m from the ship track) 
and Probe #8 located at a distance of 1.5m from the 
wall (or 4.5 m from the ship track). 

A total of 156 experiments were conducted with 
three different demihull spacings, four different water 
depths and thirteen different ship speeds.  In this paper, 
we focus on a limited subset of those experiments with 
a water depth of 0.45 m, a demihull spacing of 0.4 m, 
and four non-dimensional ship speeds with depth-
based Froude numbers ranging from 0.73 to 1.79. 
 

 
Figure 2: Side view of discretized catamaran hull form. 
 
Each hull of the catamaran was discretized with 168 
quadrilateral panels as shown in Figure 2. We initially 
investigated the spatial distribution of the vertical 
velocities induced by the body singularities. Figure 3 
shows a plot of the vertical velocity field normalized 
by its maximum value. As expected, the vertical 
velocities induced by the ship motion are strongest 
near the ship’s waterline in regions where the 
component of the normal vector in the direction of ship 
motion (nx) is largest near the bow and transom stern. 
A plot of the normalized velocity field along a y-
transect at x = 1.5 m (or x/L = 0.67 from stern) is 
shown in Figure 4. It can be seen that vertical velocity 
field decays rapidly away from the body to less than 
10-5 of its maximum value at distance of half a ship 
length from the body. We thus used half a ship length 
as a reasonable upper limit to define the extent of the 
near-field region. 
 

 
Figure 3: Spatial distribution of normalized vertical velocity 
field induced by motion of ship. 
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Figure 4: Normalized vertical velocity field induced by 
motion of ship along x/L = 0.67 from stern. 
 
The numerical model basin was setup to reproduce the 
configuration of laboratory model basin. A 35 m long, 
12 m wide and 0.45 m deep computational domain was 
set up with grid sizes Δx = Δy = 0.05m for a total of 
701 points in the x direction and 241 points in the y 
direction. The lateral boundaries were fully reflecting 
while 0.5 m wide damping layers were placed at the 
upstream and downstream ends of the basin to absorb 
outgoing waves. 

Numerical simulations were carried out for model 
ship speeds of 1.533 m/s, 1.917 m/s, 3.067 m/s, and 
3.757 m/s, corresponding to depth-based Froude Fh = 
0.73, 1.0, 1.47 and 1.79. The simulations were 
performed with time step size Δt =0.015s, Smagorinsky 
coefficient Cs = 0.2 and bottom friction coefficient fb = 
0.01. Sample snapshots of the instantaneous water 
surface elevation are plotted in Figures 5 to 8 for Fh = 
0.73, 1.0, 1.47 and 1.79 respectively. For vessels 
traveling at subcritical speeds in deep water, the 
classical V-shaped Kelvin ship water pattern is 
obtained with a wake consisting of diverging and 
transverse waves enclosed within 19.5° cusp lines. As 
the water depth decreases, the half-angle of the 
enclosing wedge slowly increases to 90° at Fh = 1 
before decreasing again in the supercritical regime. 

Havelock (1908) derived the relationship between 
the wedge half-angle and depth-based Froude number 
as:   
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Figure 5: Predicted wave pattern for a vessel travelling at 
Froude Number, Fh = 0.73. 
 

 
 
Figure 6: Predicted wave pattern for a vessel travelling at 
Froude Number, Fh = 1.0. 
 
where 
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The predicted enclosing half-wedge angles are 24°, 43° 
and 34° for Fh = 0.73, 1.47 and 1.79 respectively. The 
theoretical half-wedge angles for are also shown in 
Figures 5, 7 & 8. It can be seen that the theoretically-
predicted angles visually correlate well with the 
simulated wake pattern. 

Figures 5 to 8 also highlight the differences in the 
sub-critical (Fh = 0.73), transcritical (Fh = 1), and 
supercritical (Fh = 1.47, 1.79) wake patterns. At sub-
critical speeds, the wake still consists of the classical 
diverging and transverse waves. At Fh ≈ 1, the 
transverse waves are barely able to keep up with the 
ship and decay rapidly in height away from the stern. 
At supercritical speeds, the wake consists of a 
sequence of diverging waves with the longest wave at 
the leading edge of the V-shaped wake. The 
wavelength/wave period of the trailing diverging 
waves decrease as the wave propagation angle 
becomes more aligned with the ship track. 

We next conducted detailed model-data 
comparisons of the time histories of the water surface 
elevation at the laboratory gauge locations. Figures 
Figures 9 to 12 show a comparison of the measured 
and predicted time histories at Probes #1 (1m from ship 
track), #3 (2m from ship track) and #7 (4m from ship 
track). 

 
 
Figure 7: Predicted wave pattern for a vessel travelling at 
Froude Number, Fh = 1.47. 
 

 
 
Figure 8: Predicted wave pattern for a vessel travelling at 
Froude Number, Fh = 1.79 . 
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Figure 9: Comparison of time histories of the measured and 
predicted free surface elevations at Probes #1, #3 and #7 for a 
vessel travelling at Froude Number, Fh = 0.73. 
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Figure 10: Comparison of time histories of the measured and 
predicted free surface elevations at Probes #1, #3 and #7 for a 
vessel travelling at Froude Number, Fh = 1.0 
 
For the sub-critical (Fh = 0.73) test, the ship-generated 
wave time histories look like dispersive wave packets. 
Good agreement is generally observed between the 
measured and numerically-predicted time histories 
except for the presence of high-frequency fluctuations 
in the measured data. The high-frequency fluctuation 
corresponds to diverging waves with periods of 0.33s 
or water depth to wavelength ratio h/L = 2.65. These 
extremely short-period waves are beyond the 
dispersive limit of the Boussinesq model (max h/L = 
0.5) and cannot be resolved by the weakly dispersive 
model. We should also point out that the wave periods 
are related to the ship speed and wave propagation 
direction by the dispersion relation: 
 

2cos tanhgU kh
kT k
πθ = =                                        (41) 

 
where k is the wavenumber and θ is the wave direction 
relative to ship track with θ = 0° corresponding to 
transverse waves propagating parallel to the ship track.  
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Figure 11: Comparison of time histories of the measured and 
predicted free surface elevations at Probes #1, #3 and #7 for a 
vessel travelling at Froude Number, Fh = 1.47. 
 
The dominant transverse wave for Fh = 0.73 with θ = 
0° has a wave period T = 1.04s while the dominant 
diverging wave close to the cusp line with θ = 34° has 
a period of 0.82s. The high-frequency fluctuations in 
the measured data (T=0.33s) correspond to short 
diverging waves in the inner region of the wake with 
wave direction θ = 70°, which is almost perpendicular 
to the ship track. These waves would typically be 
damped out in prototype by the turbulence from the 
propulsion system. 

The model-data comparisons are shown in Figure 
10 for the transcritical speed Fh = 1.0. A prominent 
depression of the water level is observed at Probe #1 
which is closest to the ship. This lowering of the water 
level is a “Bernoulli” effect, associated with the 
increase in fluid velocity as the flow accelerates around 
the hull. The magnitude of the depression decreases 
with increasing distance from the ship track and is 
barely noticeable at the far-field gauge (Probe #7). 
Reasonably good agreement is also observed between 
the numerical model predictions and measured data 
except for the extremely short-period diverging waves. 
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Figure 12: Comparison of time histories of the measured and 
predicted free surface elevations at Probes #1, #3 and #7 for a 
vessel travelling at Froude Number, Fh = 1.79. 
 
The supercritical wave pattern includes a broader band 
of wave frequencies from long-period waves at the 
leading edge to short-period waves in the inner region 
of the wake. Some of the largest waves in the measured 
time histories shown in Figures 11 and 12 for Fh = 1.47 
and 1.79 correspond to the extremely-short diverging 
waves. The weakly dispersive Boussinesq model is 
able to match the first few long-period waves but not 
the shorter trailing waves.   
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Figure 12: Cross-sectional profile of bathymetry of 
navigation channel used for the ship wave shoaling tests. 
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Figure 14: Predicted free surface elevation time history at y 
= 5m (h = 0.4m) for a vessel travelling at Froude Number, Fh 
= 0.73. 
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Figure 15: Predicted free surface elevation time history at y 
= 5m (h = 0.4m) for a vessel travelling at Froude Number, Fh 
= 1.47. 
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Figure 16: Predicted free surface elevation time history at y 
= 1.2m (h = 0.02m) for a vessel travelling at Froude Number, 
Fh = 0.73. 
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Figure 17: Predicted free surface elevation time history at y 
= 1.2m (h = 0.02m) for a vessel travelling at Froude Number, 
Fh = 1.47. 



 

We next investigated differences between the 
shoaling characteristics of the sub-critical and 
supercritical wave patterns by building a navigation 
channel with a 1-m wide constant depth section and 
side slopes of 1:10 as shown in Figure 13 in the 
computational basin. A 0.15-m wide damping layer 
was place along the shoreline to absorb waves running 
up the beach slope. Numerical tests were repeated for 
the  Fh = 0.73 and Fh = 1.47 ship speeds with the new 
bathymetry. Figures 14 and 15 show the predicted 
surface elevation time histories at y = 5m (h = 0.4m). 
Similar wave heights of ~0.02cm were obtained for 
both the sub-critical and supercritical speeds at the 
“deep” section.  

Figures 16 and 17 show the predicted wave 
elevation time histories at a shallow water depth of 
0.02m close to the shoreline. Nonlinear wave 
steepening leads to a highly asymmetric profile in 
shallow water. Although the asymmetric profiles of the 
sub-critical and supercritical tests look similar, we 
notice a distinct difference in the wave front. While the 
sub-critical pattern is shaped more like a dispersive 
wave packet with the largest wave in the middle, the 
supercritical pattern has an N-shaped wave front with 
the largest crest elevation occurring immediately after 
the initial water level depression. The subsequent 
waves gradually decrease in height. Supercritical 
speeds thus lead to large breaking wave event after the 
initial water level depression. This would be consistent 
several reported observations of “waves appearing out 
of nowhere” for high-speed vessel wakes. The N-
shaped wave front is also similar to that of tsunamis 
and would lead to larger wave runup on the shoreline. 

 
LABORATORY EXPERIMENTS IN A NARROW 
TANK 
 
Gourlay (2001) conducted laboratory experiments in 
the towing tank of the Australian Maritime College to 
investigate the turbulent bores generated by vessels 
traveling at supercritical speeds in narrow channels. 
The tank is 60 m long and 3.5 m wide. The tests were 
conducted at a water depth of 0.114 m. A monohull 
vessel with a length of 1.6 m, beam of 0.4 m and draft 
of 0.1 m was used for the experiments. The parent hull 
of the vessel is the high-speed displacement hull series 
described in Robson (1988) with a wide transom stern 
and rounded bilge. 

 The extremely large vessel draft to water depth 
ratio (h/D = 0.114) and wide transom stern of the 
vessel made this test series more difficult to simulate. 
We eventually added a virtual appendage to vessel 
stern as suggested by Couser et al. (1998) to obtain 
stable numerical computations. The other challenging 
part of this simulation was being able to reproduce 
wave breaking that occurred at the front of the bores. 

We described the results of the simulations conducted 
for one of the ship speeds corresponding to a depth-
based Froude number Fh = 1.15. A 60 m long, 3.5 m 
wide and 0.114 m deep computational domain was set 
up with grid sizes Δx = Δy = 0.05m for a total of 1201 
points in the x direction and 71 points in the y 
direction. The lateral boundaries were fully reflecting 
while 0.5 m wide damping layers were placed at the 
upstream and downstream ends of the basin to absorb 
outgoing waves. 

Numerical simulations were performed with time 
step size Δt = 0.015s, Smagorinsky coefficient Cs = 0.2 
and bottom friction coefficient fb = 0.01. A sample 
snapshot of the simulated water surface elevation is 
shown in Figure 18. The wave pattern initially starts 
off as a V-shaped wake. The reflected waves form 
Mach-stem waves along the channel walls that move 
towards the middle of the tank and eventually form a 
uniform long-crested solitary-type wave. Since the 
phase speed of solitary waves can be approximated by 

( )g h H+ , the solitary-type wave can travel faster 
than the ship over a narrow range of depth-based 
Froude numbers. This leads to the generation of a 
sequence of solitary-type waves ahead of the ship. The 
waves start to break for waves with crest elevations 
greater than approximately 60% of the water depth.  
This leads to the formation of an undular bore type 
profile ahead of the ship.   

 

 
 
Figure 18: 3-D View of predicted wave pattern for a vessel 
travelling at Froude Number, Fh = 1.15 in narrow channel. 
 
The measured and predicted water surface elevation 
time series at a gauge located at x= 44m, y = 0.72m are 
shown in Figure 19. The mean water level ahead of the 
ship increases while the water level along the sides of 



 

the ship is reduced. The numerical model is able to 
predict the profile of the undular bore ahead of the 
ship. The predicted profile is sensitive to the wave 
breaking formulation and additional tests are being 
performed to yield the best formulation that works over 
a wide range of Froude numbers.   
 

 
 

 
Figure 19: Comparison of time histories of measured and 
predicted free surface elevations at 0.72m from tank wall for 
a vessel travelling at Froude Number, Fh = 1.15. 
 
CONCLUSIONS 
 
A computationally-efficient numerical model has been 
developed to predict the waves generated by high-
speed vessels traveling at subcritical, transcritical and 
supercritical speeds in shallow water. The model is 
based on a fully nonlinear set of Boussinesq-type 
equations for wave propagation over water of variable 
depth. The ship is represented in the far-field 
Boussinesq model by the vertical velocity field 
produced at the still water level by a distribution of 
sources over the body surface. Model-data 
comparisons have been conducted with two sets of 
laboratory experiments of ship-generated waves in 
both a wide and narrow channel. The numerical model 
was able to reasonably predict the ship-generated wave 
profiles excluding the extremely short-period diverging 
waves that are beyond the dispersive limit of the 
Boussinesq equations.  
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