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EQUILIBRIUM SHAPE OF HEADLAND-BAY BEACHES
FOR ENGINEERING DESIGN

Luis J. Moreno1, Nicholas C. Kraus2, M. ASCE

Abstract:  The equilibrium shoreline form of crenulate or headland-bay
beaches was identified in the 1940s and is widely accepted by coastal
geomorphologists and engineers.  However, little quantitative verification of
the standard functional shoreline forms, the logarithmic-spiral shape and
parabolic shape, has been made.  In addition, limited guidance is available for
applying the functional shapes in engineering practice.  In this paper, we
investigate the two shapes by fitting to 46 beaches in Spain and in the North
America covering from large regional scale to small project scale. Software
is described which automates the fitting.  A new function, called the
hyperbolic-tangent shape, is introduced for engineering applications.  The
hyperbolic-tangent shape is easy to fit, and its controlling parameters have
simple geometric interpretation.  Guidance is given for interpreting and fitting
the three headland-bay beach functions, with background data listed.

INTRODUCTION AND BACKGROUND
The concept of an equilibrium shape of crenulate or headland-bay beaches was

introduced by Krumbein (1944), followed by the work of Silvester (1960) for
engineering applications and by Yasso (1965) for fitting of a logarithmic spiral to data.
 Headland control, leading to a crenulate-shaped equilibrium beach planform, has been
advocated for engineering use by Silvester and Ho (1972) and Silvester and Hsu (1993)
as a naturally functioning and preferable means of shore protection.
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Because little quantitative verification of proposed headland-bay shapes could be
found, one objective of the present study is to investigate the generality of these
equilibrium shapes through analysis of a large data set of beach response to headlands
ranging from regional scale to local engineering projects.  The second objective is to
develop guidance for applying the idealized shapes in engineering and morphology
studies.  In the process of investigating the shapes and developing engineering guidelines,
a new shape was developed which we call the hyperbolic-tangent shape.

Previous researchers proposed two functions for describing the equilibrium shoreline
of a headland-bay beach, the logarithmic spiral (op. cit.) and the parabolic shape (e.g.,
Hsu et al. 1987; Hsu and Evans 1989; Silvester and Hsu 1993).  None of these shapes,
including the hyperbolic-tangent shape proposed in this study, is derived directly from
the acting physical processes that developed the shape; rather, they are observational.
The empirical approach appears strong qualitatively, because of the existence of the
many headland beaches found on all coasts of the world.  The weakness of the approach
lies in the quantification process of fitting a shape to data and for design, where data will
not exist, requiring the engineer to exercise judgement in the fitting procedure.  Many
more references were consulted and reviewed than can be given here. We plan to discuss
these, the assembled database, and calculation algorithms in another publication.

As discussed in the original sources, headland-bay equilibrium shoreline shapes arise
through wave sheltering by diffraction at the object serving as the headland, combined
with refraction, which will dominate with distance along the beach away from the
headland.  This explanation tends to require the condition of a strongly predominant
wave direction.  LeBlond (1972) studied the existence and properties of a planimetric
shape towards which a headland beach asymptotically approached.  He also attempted
a numerical simulation of the erosion of a linear beach in the presence of a headland, but
was not fully successful.  Komar and Rea (1975) and Walton (1977) investigated cause
and effect in formation of headland beaches.  The problem has yet to be resolved fully,
although modern modeling technology appears capable of doing so.  Wind (1994)
presented an analytical model of crenulate-shaped beach development, for which the
beach shape remains constant with time, but with the entire form expanding at a rate
according to a time function.

A logarithmic-spiral (hereafter abbreviated as log-spiral) shape eventually turns
around the headland and, at some ambiguously determined point whose location depends
on the site, it loses meaning for describing shoreline position.  The question as to where
this cutoff should be is problematic because of limitations of a static (equilibrium) form.
 Site-specific constraints such as presence of other headlands or sediment-impounding
features, trend of bathymetric and topographic contours, and underlying geologic
structure exert controls that cause deviations of the shoreline from a simple and smooth
form.  Sometimes, the turning of the log spiral fits the shape of the shoreline produced
by impoundment at a headland-type feature located down drift.  In summary, the log-
spiral shape might best be viewed as applicable to the beach located between two
headlands for a coast with predominant wave direction.
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The parabolic shape was developed by Hsu et al. (1987, 1989a, 1989c), Hsu and
Evans (1989), and Silvester and Hsu (1991, 1993) to improve agreement, as compared
with the log spiral, along the down-drift section of a headland-bay beach.  This section
is not typically strongly curved distant from the headland, unless it intersects a sediment-
impounding structure or headland.  In studying single-headland beaches, the present
authors developed the hyperbolic-tangent shape as described in this paper, which appears
to have advantages over the parabolic shape in ease of application and interpretation of
empirical parameters defining it.

In the course of this investigation, automated shape fitting routines were developed
in the Graphical User Interface of the MatLab (Version 5) language.  These convenient
programs are available from the authors upon request. 

HEADLAND-BAY DATABASE
A database was developed comprised of 23 beaches each in Spain and in North

America.  Data were sought for beaches extending from relatively small-project scale
(hundreds of meters) to regional scale (exceeding tens of kilometers for the case of the
headland bay downdrift of Cape Canaveral).  The database and resultant fitting
parameters are summarized in tabular form at the end of this paper.  The observed
headland-bay beaches were classified as having one, two, or “1.5” headlands (partial
headland located down drift of the main headland).  The database was developed from
nautical charts, project drawings, and aerial photographs, from which the shoreline
position and the location and geometry of the headland were digitized. 

The expansive data set covers a wide range of beach lengths, sediment size from fine
to medium sand, types and sizes of headland controls, and incident wave conditions. It
therefore provides a challenge to the concept of an equilibrium shape for headland-bay
beaches, by which the validity and universality of the shapes can be examined.

LOGARITHMIC SPIRAL SHAPE
Krumbein (1944) observed that a headland-bay beach adopts an equilibrium shape

that is similar to a log spiral.  The pole of the spiral is identified as the diffraction point
(Silvester 1960, 1976), and the characteristic angle of the spiral is a function of the
incident wave angle with respect to a reference line.  For headlands of irregular shape and
for those with submerged sections, the diffraction point cannot be specified
unambiguously, a problem entering specification of all equilibrium shapes.  The reference
line extends from the approximate location of the diffraction point to a downdrift
headland.  In fitting the log-spiral to data, the location for of the pole can be considered
as free parameter to be determined in a best-fit search.  In design, some ambiguity exists
as to where to locate the pole. 

The logarithmic, equiangular, or logistic spiral as shown in Fig. 1 was described by
Descartes as the curve that cuts radius vectors from a fixed point O under a constant
angle α.  It is expressed mathematically in polar coordinates by

 e RR αθ= cot
0 (1)
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where R = length of the radius vector for a point P measured from the pole O; θ = angle
from an arbitrary origin of angle measurement to the radius vector of the point P; R0 =
length of radius to arbitrary origin of angle measurement; and α = characteristic constant
angle between the tangent to the curve and radius at any point along the spiral.

A property of the log-spiral curve is that the angle a between the tangent to the curve
and the vector radius at any point along the curve is constant.  This leads to the
interesting result that the shape of the log spiral is controlled only by α, with the
parameter Ro determining the scale of the shape.  In fact, the functioning of Ro is
equivalent to setting a different origin of measurement of the angle θ.  In other words,
graphically the log-spiral may be scaled up or down by turning the shape around its pole.
 Fig. 2 shows how different values of α alter the shape.

Fig. 1.  Definition sketch of the logarithmic spiral shape.

Values of α for headland-bay beaches reported in the literature range from about 45º
to 75º.  In general, as α becomes smaller, the log spiral becomes wider or more open.
There are two singular values or limits for α:  if α = 90º, the log spiral becomes a circle,
and if α = 0º, the log spiral becomes a straight line.

Sensitivity of the log-spiral shape to small changes in α is shown in Fig. 3.  Variations
(± 1%) in α-values produce large variations in position of the spiral, because the angle
enters the argument of an exponential function.  Additionally, the smaller the
characteristic angle α, the larger the difference for the same percentage of angle
variability.  The practical consequence is that, because we are interested in fitting this
log-spiral shape to headland-bay beaches – especially in design of shore-protection
projects, α has to be accurately defined.
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Fig. 2.  Variation of logarithmic-spiral shape with α (R0 = 500 m).
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Fig. 3.  Sensitivity of log-spiral shape to small variations of the parameter α (R0 = 500 m).

To analyze the validity of the assumption that headland-bay beaches can be
adequately described by a log-spiral function, the pole location, radius at origin of angle
measurement (scaling factor), and the spiral characteristic angle α must be identified,
giving four unknowns.  If the pole position is known, a solution procedure for the best-fit
shape, that is, to find the best-fit value of α, follows.  Eq. 1 can be rewritten as

αθ cot)(ln)(ln 0 += RR (2)

where R = radius to point P, θ = angle between polar axis and radius vector to point P.
This linear relationship is convenient for fitting a log-spiral curve to data.  The slope of
the straight line is cot α, from which α can be obtained.

A computer program was written that searches for the pole position while minimizing
the fitting error.  It also determines the characteristic angle α that best fits the shoreline
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data (measurement) points for a specified bay-shaped beach.  The program outputs the
following parameters:  root-mean square (rms) error of the fit taken in the direction of
the radius vector; pole coordinates; angle α; and R0.

PARABOLIC SHAPE
For the parabolic shape, the focus of the parabola is taken to be the diffraction point.

The three coefficients needed to define the shape (e.g., see Silvester and Hsu 1991,
1993) are functions of the predominant wave angle with respect to a control line.  The
control line is defined similarly to the case of the log-spiral shape as the line that extends
from the diffraction point to a reference point.  Down drift of the reference point, the
shoreline is assumed to be aligned parallel to the incident wave crests.  This shape
pertains to that of a long straight beach with shape controlled by one headland.

The parabolic shape of a headland bay beach was proposed by Hsu et al. (1987) and
is expressed mathematically in polar coordinates by Eq. 3 for the curved section of the
beach and by Eq. 4 for the straight down-drift section of the beach,












     C +     C + C = 

R
R 2

210
o θ
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θ
β

for θ ≥ β (3)

θ
β

sin
sin

 = 
R
R

0

for θ ≤ β (4)

where R = radius to a point P along the curve at an angle θ; Ro = radius to the control
point, at angle β to the predominant wave front direction; β = angle defining the
parabolic shape; θ = angle between line from the focus to a point P along the curve and
predominant wave front direction; and C0, C1, and C2 = coefficients determined as
functions of β.  The variable R of the parabolic shape is expressed as a second-order
polynomial of β/θ for the curved section of the shape; otherwise, it is a straight line.  For
θ = β, the condition R = R0 must be met, which forces C0+C1+C2 = 1 by Eq. 3.

Fig. 4 is a definition sketch for the parabolic shape, and the revised values of the
coefficients C0, C1, and C2 are listed in Table 4.2 of Silvester and Hsu (1993).  To our
knowledge, the C-coefficients appear for the first time in the literature in Hsu and Evans
(1989).  We believe that their values were obtained by fitting of data from 14 bay
beaches in Australia and from seven physical-model beaches (Ho 1971).  Values of β
ranged in prototype beaches from 22.5° to 72.0°, whereas the variation in model beaches
was from 30° to 72°.  Values of the C-coefficients were later revised in Silvester and
Hsu (1993) and given in tabular form from β = 20° to 80° at a 2-deg intervals.

As a sensitivity test, we analyzed the response of the parabolic shape to a change of
the value of the characteristic angle β and of Ro.  The angle ß corresponds to the angle
between the control line and the predominant wave crest orientation.  Ro is a scaling
parameter – the length of the control line.
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Fig. 4.  Definition sketch of the parabolic shape.

Fig. 5 depicts change in parabolic shape for different values of ß for fixed R0 and a
given focus position.  Because the parabolic shape is defined only for ? ≥ ß, the
alongshore extent of the shape decreases as β increases.  In addition, as β increases, the
slope of the shape at the point where θ = β departs farther from horizontal.  Similarly,
Fig. 6 shows the change in parabolic shape for different values of Ro for constant ß, for
a given focus position.  The scaling effect of the radius Ro is evident.  In summary, the
angle ß controls the shape of the parabola, and Ro controls its size.

Because the control line intersects the beach at the point where the curved section
meets the straight section of the beach, the sensitivity of the parabolic shape to errors in
the estimation of the control point was examined.  This was done by jointly changing Ro

and ß while keeping the distance from the headland to the straight shoreline constant.

Fig. 7 shows the resultant parabolic shapes for slightly different locations of the
control point.  It is apparent that the parabolic shape is insensitive to ß.  This observation
means that the control point is not well defined, i.e., uncertainty in selection of the
control point and hence the radius Ro and ß has little influence on the final result.

To analyze the validity of the assumption that a parabolic shape can describe
headland-bay beaches, the location of the focus of the parabola and the characteristic
angle ß must be specified, together with the scaling parameter Ro.  Because the parabolic
shape is defined in a particular coordinate system, in design applications an extra
unknown enters – the orientation of the entire parabolic shape in plan view.  Therefore,
five unknowns must be solved for in practical applications.  For this purpose, a computer
program was prepared that solves for the five unknowns by minimizing the composite
radial (for the curved section of the beach) and Cartesian (for the straight-line section of
the beach) rms error of fit for a given bay-shaped beach.
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Fig. 7.  Sensitivity of parabolic shape to selection of control point location.

If the location of the focus is known, and the wave crests are parallel to the x-axis,
the values of R and ? can be computed for each data point.  For each candidate value of
the angle ß, the right-hand side of Eq. 3 can be computed and, therefore, a value of Ro

estimated for each point.  The selected combinations of focus location, angle of rotation
of the local coordinate system to the absolute coordinate system, Ro, and ß are computed
such that the radial rms error achieves a minimum.
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HYPERBOLIC TANGENT SHAPE
The hyperbolic tangent shape was developed by the authors to simplify the fitting

procedure and reduce ambiguity in arriving at an equilibrium shoreline shape as
controlled by a single headland.  As demonstrated above, it can be difficult to specify the
location of the pole or focus, and the characteristic angle (angle between predominant
wave crests and the control line) for developing a log-spiral shape or a parabolic shape.
 In addition, the log-spiral shape does not describe an exposed (straight) beach located
far downdrift from the headland, so that another shape must be applied.

Definition
The hyperbolic tangent functional shape is defined in a relative Cartesian coordinate

system as

)(tanh bxay m±= (5)

where y = distance across shore; x = distance alongshore; and a (units of length), b (units
of 1/length), and m (dimensionless) are empirically-determined coefficients.

This shape has three useful engineering properties.  First, the curve is symmetric with
respect to the x-axis.  Second, the values y = ± a define two asymptotes; in particular of
interest here is the value y = a giving the position of the down-drift shoreline beyond the
influence of the headland.  Third, the slope dy/dx at x = 0 is determined by the parameter
m, and the slope is infinite if m < 1.  This restriction on slope indicates m to be in the
range of m < 1.

According to these three properties, the relative coordinate system should be
established such that the x-axis is parallel to the general trend of the shoreline with the
y-axis pointing onshore.  Also, the relative origin of coordinates should be placed at a
point where the local tangent to the beach is perpendicular to the general trend of the
shoreline.  These intuitive properties make fitting of the hyperbolic-tangent shape
relatively straightforward as compared to the log-spiral and parabolic shapes, making it
convenient in design applications. 

Properties
Sensitivity testing of the hyperbolic tangent shape was performed to characterize its

functional behavior and assign physical significance to its three empirical coefficients.
The parameter a controls the magnitude of the asymptote (distance between the relative
origin of coordinates and the location of the straight shoreline), and its functioning is self-
evident.  Fig 8 shows the action of b as a scaling factor controlling the approach to the
asymptotic limit.  Fig. 9 indicates that m controls the curvature of the shape, which can
vary between a square and an S curve.  Larger values of m (m ≥1) produce a more
rectangular and somewhat unrealistic shape, whereas smaller values produce more
rounded, natural shapes.

For small values of x, the defining Eq. 5 is approximated as:

( )mxb a y ±≈ (6)
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and the slope dy/dx of the hyperbolic tangent for small values of x is:

( ) 1−±≈ mxb mba  
dx
dy (7)

Therefore, the value of the slope of the hyperbolic tangent at the relative origin of
coordinates may be characterized according to the value of the coefficient m: 

For m < 1, the slope is infinite (gives a symmetry point); 
For m = 1, the slope is ± ab; and
For m > 1, the slope is zero. 

Consequently, in practical application, interest lies in values of m < 1.
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Fig. 8.  Dependence of hyperbolic-tangent shape on b  (a = 1,000 m; m = 0.6).
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To fit the hyperbolic tangent shape to a given shoreline, we must solve for six
unknowns; the location of the relative origin of coordinates, the coefficients a, b, and m,
and the rotation of the relative coordinate system with respect to the absolute coordinate
system.  Because of the clear physical meaning of the parameters, fitting of this shape can
be readily done through trial and error.  An optimization procedure that minimizes the
rms error with respect to vertical axis values was implemented that solves for the six
unknowns. 

RESULTS
The three functional headland-bay shapes were fit to the database assembled in this

study, as summarized in Table A1.  Various authors have noted that fitting of the log-
spiral shape is difficult in the down-drift section of the beach, also encountered here. It
is a particular concern in attempting to fit to long beaches or to beaches with one
headland.  However, even in these situations, it was found that a good fit could be
achieved for the stretch near the headland.

The parabolic shape provides good fits for beaches with a single headland, because
they consist of a curved section (well describes the portion of the beach protected by the
headland) and a straight section (well describes the down-drift section).  However, this
shape is insensitive to values of the determining parameters.  Interpolation of the
C-coefficients over a broad multi-valued plain makes the fitting process time consuming.
 The possibility of allowing the C-coefficients to be free while keeping the second-order
polynomial shape has been implemented and will be discussed elsewhere. The goodness
of the fit increases significantly in most applications, suggesting re-evaluation of the C-
values.

The hyperbolic-tangent shape was found to be a relatively stable and easy to fit,
especially for one-headland bay beaches.  According the fittings shown in Table 1 in the
Appendix and the plot of best-fit values in Fig. 10, the following simple relationships are
obtained for reconnaissance-level guidance:

2.1≅ba (8)

5.0≅m (9)

The physical meaning of Eq. 8 is interpreted that the asymptotic location of the down-
drift shoreline increases with the distance between the shoreline and the diffracting
headland.  Eqs. (8) and (9) are equivalent to selecting one family of such hyperbolic
tangent functions for describing headland-bay beaches, and these values are convenient
for reconnaissance studies prior to detailed analysis. 

The mean value of the product ab from the database was ab = 1.2.  Least-squares
fitting for the linear function between log10 a and log10 b led to the following relationship
shown as the line drawn through the data points in Fig. 10:

6060.09124.0 =ba (10)

with a correlation coefficient R2of 0.8696.
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EXAMPLES OF FITTING WITH HYPERBOLIC TANGENT
Two examples of fittings of the hyperbolic tangent shape to beaches in the database

are shown here.  Values of obtained fitting coefficients are listed in Appendix A.

Drakes Bay, California, USA
Drakes Bay is a 16.4-km-long crenulate-shaped beach located north of San

Francisco.  Its shape is determined by diffraction of Pacific-Ocean waves at a headland
called Point Reyes.  The area is tectonically active and lies on the San Andreas Fault.
Beach sediments consist of discontinuous accumulations of well-to-moderately sorted,
fine- to coarse-grained sand interspersed with pebbles and gravel.

Fig. 11 shows the nautical chart with 56 digitized data points and the best-fit curve.
The visual fit is very good in the beach section close to the main headland.  The curve
deviates from the shoreline in the middle section because of irregularities in beach plan
form and because of the presence of Drakes Estero (a river mouth).

Rosas Bay, Girona, Spain
Rosas Bay is located on the Northeast coast of Spain.  It is a 2.2-km-long crenulate-

shaped beach with 1 to 1.5 headlands.  Shoreline shape is controlled in great part by
jetties.  Beach material is fine- to medium-size sand with median grain size in the range
of 0.24 to 0.29 mm.  Fig. 12 shows an aerial view of the Bay with 29 digitized data
points and best-fit hyperbolic tangent.  Excellent visual agreement is seen.
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Fig. 11.  Hyperbolic-tangent fit to Drakes Bay, California.

Fig. 12.  Hyperbolic-tangent fit to Rosas Bay, Spain.

CONCLUSIONS
A database comprising 23 beaches in Spain and 23 beaches in the North America was

developed to examine the equilibrium shapes of headland-bay beaches.  Convenient
software routines were written to automate the fitting process and make it objective (not
discussed in this paper).  It is noted that such shapes are applicable to coasts with a
consistent predominant direction of net longshore sediment transport. 

Based on our study, it is straightforward to fit the log spiral to shoreline-position
data, but this equilibrium shape cannot describe beaches with only one headland.  In
addition, the log spiral is sensitive to the angular parameter defining it.  For one-headland

  2,000 m
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beaches, ambiguity exists as to where to terminate the fitting or design.  The parabolic
shape performs better for beaches with one headland, but it is more difficult to fit than
the log spiral and is sensitive to the choice of the control line. 

The newly introduced hyperbolic-tangent beach provides good fits for one-headland
beaches and is more convenient to apply than the parabolic shape.  Guidance was
developed for estimating equilibrium shapes with the hyperbolic tangent in
reconnaissance studies. 
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Appendix A:  Summary of Headland-Bay Data Base

Table A1.  Summary of fitting of the three headland-bay equilibrium shapes to 46 beaches

Beach Log-spiral Parabolic Hyperbolic Tangent

Beach

No.
Head.

Length
(m)

   α  
 (º)

     R0    
    (m)

   β   
    (º)

    R0     
   (m)

     a      
   (m)

     b     
    (m)

         
   m

Banús                           (c)
Málaga, Spain             (c*)

2 348    159 88.26 114 25.63 214 76.7 7.46e-3 0.456

Banús                           (e)
Málaga, Spain             (e*)

2 245    157 75.62 68 80.00 152 86.2 1.52e-2 0.544

Benalmádena               (d)
Málaga, Spain

2 830 74.12 716 75.31 685 533.6 3.91e-3 0.519

S. Antonio Calonge      (b)
Girona, Spain              (b*)

2 325    160 87.86 91       
77.78

        
100

       
81.3

    
1.36e-2

     
0.420

S. Antonio Calonge      (c)
Girona, Spain              (c*)

2 342    167 88.02 105  
80.00

        
127

       90.0        
1.88e-2

       
0.617

Cunit                              (j)
Tarragona, Spain         (j*)

2 384   173 89.80 116         
39.47

         
135

     
83.29

        
1.18e-2

      
0.410

Cunit                             (k)
Tarragona, Spain        (k*)

2 588    298 75.61 276          
69.09

        
216

        
167.0

        
7.29e-3

      
0.364

Drakes Bay, CA, USA 2 16397 38.75 12 33.33 11472 7178.0 1.01e-4 0.444

Kelleys Island, Lake Erie,
OH, USA

2 1930 86.12 841 78.84 1273 882.4 2.43e-3 0.813

Point Chehalis, WA, USA 2 1430 52.34 50 39.14 742 385.2 2.86e-3 0.548

Barceloneta                  (a)
Barcelona, Spain

1.5/2 415 82.50 373 75.09 407 320.9 4.50e-3 0.533

Benalmádena               (c)
Málaga, Spain

1.5/2 645 51.47 59 44.00 458 269.9 5.97e-3 0.439

Campello                      (a)
Alicante, Spain

1.5/2 220 60.38 253 55.24 135 108.8 1.26e-2 0.532

Campello                      (b)
Alicante, Spain

1.5/2 619 82.64 461 67.34 668 614.9 2.88e-3 0.457

Hunters Cove, OR, USA 1.5/2 815 64.98 270 78.58 735 427.4 3.35e-3 0.542

Benicassim,       Castellón,
 Spain

1.5 687 32.47 1002 72.42 353 271.7 3.34e-3 0.355

Bodega Bay, CA, USA 1.5 3200 41.67 227 37.03 2201 1547.9 1.46e-3 0.815

S. Antonio Calonge      (d)
Girona, Spain

1.5 330 39.47 5 72.96 166 196.8 1.54e-3 0.403

Martha’s Vinyard, MA,
USA

1.5 4762 68.58 4725 71.54 4210 2731.7 4.80e-4 0.582

Nantucket Is., Coskata,
MA, USA

1.5 18999 67.49 12689 80.00 11358 9139.4 3.47e-4 0.655

Nules,                           (c)
Castellón, Spain

1.5 525 59.99 61 49.81 55 164.2 9.70e-3 0.566

Pelee Island (North) Lake
Erie, Ontario, Canada

1.5 4231 50.15 2160 43.41 2717 1693.2 8.71e-4 0.665

Sisters Rock, OR, USA 1.5 9376 27.49 6398 62.50 2937 973.5 3.87e-4 0.533

Tituna Spit (S) OR, USA 1.5 10563 23.27 28673 60.00 8001 3231.2 3.04e-4 0.650
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Tossa de Mar,        Girona,
Spain

1.5 336 80.18 488 63.71 155 81.7 8.99e-3 0.531

S. Antonio Calonge      (a)
Girona, Spain              (a*)

1/1.5 947    434 88.13
85.57

1980     
 495

62.77 127 80.9 9.48e-3 0.334

Halfmoon Bay      (18682)
CA, USA      (5520)

1/1.5 10058
10025

37.68
40.07

5        
16474

31.19
20.05

6953 
12351

3456.2 
3999.4

2.68e-4
2.69e-4

0.466
0.471

Hospitalet del Infante,
Tarragona, Spain

1/1.5 2302 32.72 20 36.95 927 422.2 2.25e-3 0.526

Otter Point                     (*)
OR USA

1/1.5 890 39.27 3e-1 46.38 422 254.5 1.54e-3 0.381

Rosas Bay,            Girona,
Spain

1/1.5 2200 34.46 43 32.41 1608 902.5 1.01e-3 0543

Banús                          (e*)
Málaga, Spain

1 157 76.66 138 79.19 142 204.2 6.62e-3 .195

Barceloneta                  (b)
Barcelona, Spain

1 1023 85.75 2081 64.00 803 212.6 1.93e-3 .280

Benalmádena              (c*)
Málaga, Spain

1 408 72.62 173 67.66 331 208.2 6.15e-3 .555

Brest Bay, Mich., USA 1 9056 65.41 1006 70.00 5496 4082.5 3.53e-4 .550

Canaveral Bight, FL, USA 1 21911 22.93 24 43.37 15889 13530.3 6.98e-5 0.273

Cherry Harbor, NY, USA 1 5530 78.85 1114 73.74 3332 2819.9 8.47e-4 0.439

Los Cristianos,    
Tenerife, Spain

1     382 (*)
300

49.86
67.84

531  485 57.19
30.16

229  245 157.7 
124.3

9.52e-3
8.95e-3

0.556
0 .322

Hatteras Bight, NC, USA 1 21635 21.95 5 70.67 11104 4256.5 1.56e-4 0.561

La Plaisance Bay, Mich.,
USA

1 7960 33.25 41 34.05 6141 3238.0 3.14e-4 0.450

SantaMargarita,     Girona,
Spain

1 1686 87.65 4559 79.99 1160 227.3 1.01e-3 0.475

Napeague Bay, NY, USA 1 3204 60.61 2921 70.91 2698 2097.0 8.88e-4 0.553

Port Clinton, OH, USA 1 24361 54.43 13973 29.50 20150 10345.0 1.01e-4 0.521

Sandy Hook, NJ, USA (*) 1 777 26.96 1077 69.38 245 175.1 9.29e-3 0.497

Shinnecock, NY, USA 1 130 35.10 2e-4 42.04 63 58.2 3.92e-3 0.185

Springhill, MA, USA 1 25444 43.80 1791 21.08 45190 10131.3 1.07e-4 0.674

Tituna Spit (N.) OR, USA 1 2204 70.27 989 20.00 4720 767.5 1.60e-3 0.517

(*)  Only the section of the beach close to the headland was selected for fitting.  The notation (a), (b), (c), (d), (j),
and(k) refers to specific beach cells at the particular location.  (18682) and (5520) refer to nautical chart numbers in
Halfmoon Bay.


