
E
R

D
C

/
C

H
L
 T

R
-X

X
-D

R
A

F
T
 

Coastal Ocean Data Systems (CODS) and Coastal Inlets Research Program (CIRP) 

Quantifying Coastal Evolution and Project 

Performance at Beaches Using Satellite 

Imagery 

C
o

a
s

ta
l 

a
n

d
 H

y
d

ra
u

li
c

s
 L

a
b

o
ra

to
ry

 

Ian W. Conery, Nicholas R. Olsen, Shannon Brown and 

Katherine L. Brodie  

September 2022 

DRAFT



Approved for public release; distribution is unlimited. 

The U.S. Army Engineer Research and Development Center (ERDC) solves 

the nation’s toughest engineering and environmental challenges. ERDC develops 

innovative solutions in civil and military engineering, geospatial sciences, water 

resources, and environmental sciences for the Army, the Department of Defense, 

civilian agencies, and our nation’s public good. Find out more at 

www.erdc.usace.army.mil. 

To search for other technical reports published by ERDC, visit the ERDC online library 

at http://acwc.sdp.sirsi.net/client/default. 

DRAFT

http://www.erdc.usace.army.mil/
http://acwc.sdp.sirsi.net/client/default


Program Title [[[If project was not funded by 

a military or civil program, delete all text in 

this cell]]] 

ERDC/CHL TR-XX-DRAFT 

Month Year 

Quantifying Coastal Evolution and Project 

Performance at Beaches Using Satellite 

Imagery (Report Template v4.02) 

Ian W. Conery, Nicholas R. Olsen, Shannon Brown and Katherine L. Brodie 

Coastal and Hydraulics Laboratory 

U.S. Army Engineer Research and Development Center 

3909 Halls Ferry Road 

Vicksburg, MS  39180 

Final report 

Approved for public release; distribution is unlimited. 

Prepared for Coastal and Ocean Data Systems; Coastal Inlets Research Program

Under Project ####, “CODS/CIRP CoastSat”

Monitored by Coastal and Hydraulics Laboratory 

U.S. Army Engineer Research and Development Center 

Vicksburg, MS  39180-6199

DRAFT



ERDC/CHL TR-XX-DRAFT ii 

Abstract 

Accurately delineating the shoreline is crucial for tracking coastal 

evolution, community vulnerability, storm impacts/recovery, and for 

coastal management decision making. However, existing shoreline 

measurement methods are often time-consuming and expensive and 

therefore, USACE Districts are often forced to narrow areas of interest or 

monitoring frequency, decreasing the likelihood of making data-driven 

management decisions, especially over regional scales. In the last decade, 

space-borne earth observations have captured images sub-weekly, and can 

potentially be used for shoreline monitoring. This work investigated the 

Python-based CoastSat toolkit and compared the shorelines derived from 

publicly available satellite imagery to ground truth surveys at 37 sites 

across the nation chosen in coordination with Districts. Mean horizontal 

errors ranged from 4.21 to 20.58 m with an overall mean of 11.32 m. 

Sentinel-2 had the highest individual accuracy at 8.86 m. Tidal corrections 

improved accuracies at 82% of sites. The CoastSat slope function was 

tested and there were negligible differences in shoreline accuracy when 

compared with user-defined slopes. Runup corrections improved satellite-

derived shoreline accuracy at three of five tested sites, but further work is 

needed across more sites. Twenty-year satellite-derived trends generally 

align well with ground truth trends. This satellite-derived shoreline 

approach represents a powerful, free data source for Districts which is 

available at broad spatial and temporal scales. In particular, the satellite 

approach identified quantifying storm impacts/recovery, beach 

nourishment equilibration, diffusion and decay, shoreline response to 

nearshore berm placements and decadal shoreline evolution at the 

evaluated district sites. Work is ongoing to transition to a user-friendly 

software tool.  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 

be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Coastal areas across the nation contain valuable historical, cultural, and 

natural resources that generate billions of dollars annually through 

tourism and industry (e.g., shipping and fishing). The position of the 

shoreline, generally defined as the land-sea interface, is a critical metric 

that is often utilized to track coastal evolution, community vulnerability, 

storm impacts/recovery, and for coastal management decision making. 

Therefore, accurate delineation of the shoreline is crucial for coastal 

management decision making (e.g., establishing construction setbacks). 

Yet, shorelines are complex and fluctuate on scales from seconds to 

decades, making measurements and predictions quite challenging.  

1.1 Background  

Within USACE, frequent surveying of beaches and inlets is essential for 

understanding the relevant physical processes influencing sediment 

management and developing adaptive management strategies. Existing 

shoreline mapping techniques include GPS systems, airborne and 

terrestrial lidar, coastal video imaging and unmanned aerial systems. 

However, these existing methods are often time-consuming and expensive 

and therefore, to conserve limited operational resources (e.g., personnel 

and vessels), USACE Districts are often forced to narrow areas of interest 

or monitoring frequency, decreasing the likelihood of making data-driven 

management decisions. In the last decade, space-borne earth observations 

have captured images sub-weekly and can potentially be used to examine 

regional shoreline and inlet dynamics over sub-seasonal to multi-year time 

scales (e.g., Luijendijk et al., 2018; Xu, 2018; Hagenaars et al., 2018, 

Bergsma et al., 2020). NASA launched Landsat 5 in 1984 offering 

advantageous long-term shoreline change context, and numerous global 

satellite missions with improved optical imaging sensors have since 

followed (Fig. 1). Coastal data extraction from existing satellite 

observations would effectively incur no cost since the satellite imagery is 

publicly available, making it a low commitment choice for examining 

shoreline variability and preliminary planning for districts managing 

beach projects (e.g., Coastal Storm Risk Management) or inlets. 
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Figure 1. Major global civilian satellites and respective timelines (from Vos et al., 

2019). 

 

Using the normalized difference water index (NDWI) and machine 

learning algorithms, researchers have explored automated delineation of 

the boundary between land and sea in satellite imagery (Luijendijk et al 

2018, Hagenaars et al 2018). Success led to development of an open-

source algorithm known as CoastSat which uses a supervised Multi-Layer 

Perceptron algorithm to classify four regions in a coastal image: ‘water’, 

‘white-water’, ‘sand’, and ‘other land features’ and from these 

classifications defines the shoreline as the instantaneous interface between 

water and sand (Vos et al., 2019). CoastSat has been used to generate time 

series of coastlines around the world, providing insight into shoreline 

position (e.g. Vos et al., 2019) and beach slope (Vos et al., 2020). The 

CoastSat algorithm exists as a Python algorithm, which is not easily or 

efficiently accessible to most district users, thereby motivating the creation 

of a more user-friendly, transferable shoreline mapping tool.  In addition, 

the algorithm has not yet been evaluated on many managed coastlines and 

so the ability to resolve rapid profile changes associated with 

nourishments needs to be rigorously investigated. 

Development of this satellite-based tool offers the opportunity to both 

analyze and quantify natural coastal processes as well as the impacts of 
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historic and future management strategies, such as nearshore berm 

placement and beach nourishments, on shoreline erosion rates at regional 

to national scales. Furthermore, these data could also be used to help 

inform future survey extent and/or timing, or act as a supplement to 

typical crewed surveys or planned airborne lidar surveys, especially in 

remote or hazardous regions (e.g., SAJ - Puerto Rico). Shallow coastal 

inlets are notoriously dynamic (e.g., Velasquez-Montoya et al., 2020) and 

can be hazardous to navigate (e.g., recreational boating), due to varying 

sediment exchanges and shoaling–processes which could be detectable 

from satellite data. 

1.2 Objectives 

The specific objectives of this overall effort are to 1) assess the ability of 

CoastSat to accurately quantify instantaneous shoreline positions and 

shoreline trends at a variety of USACE District sites by comparing to 

traditional ground-based survey methods and to 2) package the python-

based satellite tool into a more user-friendly GIS tool for Districts (FY 23). 

In this report we focus on documenting the results of objective (1).  

1.3 Approach  

The remainder of this report will encompass 1) background on 

methodology (CoastSat and ERDC modifications), 2) test site and ground 

truth data descriptions, 3) instantaneous satellite shoreline accuracies 

compared to ground truth data, 4) long-term satellite shoreline trends, 

management applications and storm impacts/recovery and 5) conclusions 

and recommendations.  DRAFT
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2 Methodology 

This chapter outlines the process of using CoastSat with ERDC 

enhancements (Vos et al., 2019) to extract shorelines at the 

aforementioned District test sites.  

2.1 Image Pre-processing 

CoastSat utilizes the Google Earth Engine to download cropped imagery 

from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 missions, which 

began collections in 1984, 1999, 2013 and 2015, respectively (Fig. 1; Vos et 

al. 2019). The Google Earth Engine streamlines image extraction, enables 

specific site selection and reduces the number of pulled spectral bands, 

significantly reducing download file sizes. The Landsat missions and 

Sentinel-2 have a revisit times of 16 and 5 days, respectively. Despite 

differences in satellite resolution (Fig. 1), where Landsat missions range 

from 30 to 80 m and Sentinel-2 collects at 10 m, a multi-step technique 

was employed in CoastSat to create consistent spatial resolution across all 

satellite images. With the imagery downloaded, a multiband raster dataset 

is created by fusing the high resolution sharpened panchromatic band that 

spans multiple spectral bands (Landsat 7 and Landsat 8) and the lower 

resolution from other sensors, effectively improving the spatial resolution 

from 30 to 15 m (Vos et al., 2019). Due to the absence of the panchromatic 

band in Landsat 5 and Sentinel-2, a sub-pixel down sampling technique 

was applied to make comparable image resolution and spatial error among 

all four satellite images (Vos et al., 2019). When cloud cover exceeds 10% 

in images they are automatically excluded.  

2.2 Transect and Baseline Construction 

The user is prompted to draw a reference shoreline from the first image of 

sufficient quality from the series. This reference line is the basis of 

comparison for the ML detected shorelines and used to identify “good” 

shorelines from the ML set. A detected shoreline point exceeding a 

distance of 150 m from the reference line is eliminated from the collection 

of detected points made for each image. 

Reference baselines are constructed across each of the study sites 

landward of the landward-most satellite-derived shoreline. Cross-shore 

transects are cast perpendicular from the reference line every 1.0 m in the 

DRAFT



5 

 

 

alongshore as chosen by the research team. To calculate shoreline change, 

the intersection of each transect with each shoreline is extracted and 

differenced. The transect-based approach allows for the calculation of 

shoreline change in both the cross-shore and alongshore dimensions. A 

second transect collection is also produced as specified by the research 

team, subset from the first, with a transect every 70m. This reduces 

collection of transects offers adequate spatial resolution with significant 

performance improvements and therefore, is used in most subsequent 

ERDC statistical analyses.  However, users can use the 1.0 m-spaced 

transects if needed. 

2.3 Shoreline Extraction 

CoastSat employs a multi-step shoreline extraction process. A manually 

digitized training dataset from five sites using 1500 pixels per class and 

accuracy of 98% was used to formulate supervised classification to 

categorize each pixel as ‘sand’, ‘water’, ‘whitewater’ or ‘other’ (Vos et al., 

2019). Next, the Modified Normalized Difference Water Index (MNDWI) 

creates a grayscale image and calculates values between -1.0 and 1.0 for 

each pixel, where positive values represent land and negative represent 

water. Otsu’s thresholding algorithm is used to optimize the distinction 

between land and water and the iso-valued contour shoreline is drawn 

using the Marching Squares technique (Vos et al., 2019). The shoreline 

extraction methodology was trained and tested at five sites with varying 

wave and tidal conditions and beach slopes: Narrabeen, Australia; 

Moruya, Australia; Tairua, New Zealand; Duck, USA and Truc Vert, France 

with RMSEs of 8.2 m, 11.6 m, 7.3 m, 9.0 m and 12.7 m, respectively. 

The open-source CoastSat analysis requires the user to manually select 

images of adequate quality prior to the shoreline delineation step above 

(e.g., cloud presence). This process, performed for every image, could take 

an hour or more to evaluate a site over a typical one to two decade 

analysis. To reduce user workload, ERDC developed a simple machine-

learning based tool to high- and poor-quality bypass this step and filter out 

poor images and resultant shorelines. This tool was trained from sorted 

image/shoreline combinations that were performed by hand previously in 

the project. The training set included over 1,000 usable shorelines and 

over 500 unusable shorelines. 

The ERDC-modified version of CoastSat relies on the coordinates that 

define the shape of the CoastSat-determined shoreline associated with 
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each image. To train a k-nearest neighbors voting algorithm the shoreline 

length and Hausdorff distance is calculated from the already classified 

sites. This results in a binary classifier using the deviation of those 

attributes in an unclassified shoreline from a small set of user-selected 

high quality shorelines. 

For the user this means that after a series of initial judgements provide the 

algorithm with sufficient information, it is capable of sorting most of the 

remaining shorelines independently. We have also included a check on the 

algorithm where after fifty independent classifications, the user is 

prompted to make a few more decisions to ensure that the shoreline 

standard is maintained despite evolution of the coastline over the analysis 

period. The user can QAQC and re-run the algorithm iteratively.  

The shorelines produced by the C0astSat ML algorithm are a connected 

series of points, each of which represents a pixel that was determined to 

represent the interface of land and water (Vos et al., 2019). Of interest is 

the shoreline, but other valid interfaces may be detected as well, including 

swimming pools, lagoons, landscaping features, etc. Invalid interfaces may 

also be found including white or reflective rooftops, particularly dense 

clouds, etc. When the series of points is drawn together to form a linear 

shoreline feature these extraneous detections can cause double shorelines, 

offshoots, loops, and other problematic geometries. Not all of these are 

detected in the bad shoreline sorting above, nor is that desired, as many 

accurate shoreline delineations could be lost due to the presence of a static 

structure like a swimming pool. To reduce the quantity of data that must 

be discarded, a cleaning function was developed by ERDC. This function 

takes each set of shoreline points and measures the distance from point-

to-point along the series. Clusters of points occurring more than 100m 

away from the longest string of neighboring points are discarded. These 

cleaned shorelines are saved as a shapefile at this step. 

2.4 Beach Slope and Tidal Correction 

CoastSat extracts the position of the wet/dry boundary, and therefore is 

influenced by the prevailing water level.  Since the time of the image is 

known, a tidal correction is possible using: 

                                                                                 (1)                                 
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Where in equation 1, ∆x is the cross-shore horizontal shift along the shore-

normal transects, Zref is reference elevation (e.g., 0.0 m above mean sea 

level), Zwl is the local water level (tide + residuals) at the time of image 

acquisition (stored in metadata) and m is beach face slope. Positive ∆X 

infers offshore direction. Note, the tidal correction is site-specific and 

therefore not implemented in the standard CoastSat toolbox but added as 

an ERDC enhancement.  

To initiate the tidal correction, ERDC added automatic selection of the 

closest NOAA tidal station. Since the closest station is not always 

satisfactory, the user can also input a choice of station. For each satellite 

pass a daily six-minute series is downloaded from the NOAA server.  

Following this, if the user has not provided an estimate of the beach slope, 

the CoastSat.Slope module is used to determine the beach slope by 

calculating the energy inside the peak tidal frequency band for a power 

spectrum density of a range of hypothetical tidally-corrected time-series of 

shorelines (Vos et al., 2019). The minima of the integrated spectra is 

expected to most closely match the actual beach slope (Vos et al., 2019). 

The average beach slope, whether given by the user or CoastSat.Slope is 

then used to shift both the shoreline shapefile and the cross-shore 

distances table. This operation converts the previous land/water interfaces 

which only have a horizontal spatial orientation to a proper shoreline with 

an associated vertical datum as well; in this case NOAA’s mean sea level. 

Users should be aware that the CoastSat.Slope used to shift shorelines 

applies only the intertidal region.   

2.5 Wave Runup Correction 

A correction for wave runup was explored as an addition by the team as 

well. The wave height closest to the time of each satellite pass is taken 

from a user-selected NOAA NDBC buoy. Stockdon’s 2006 standard runup 

equation (2) is used to calculate the wave’s vertical displacement from the 

significant wave height delivered by the buoy:  

                                    (2) 

 

Where H0 is wave height, L0 is wavelength, and β is beach slope. 
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These vertical dimensions from waves are used in the same manner as the 

tidal elevation correction above, to shift the shoreline along a given slope. 

The runup correction is a positive value, indicating height above the still 

water level, leading the runup correction to only move shorelines seaward, 

i.e., to negate the falsely derived, more landward shoreline resulting from 

wave runup. 
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3 Site Selection 

The research team aimed to select sites that encompassed a broad range of 

coastal settings and environmental conditions (Fig. 2; Table 1). First, 

USACE districts were contacted for recommendations based on 1) areas 

with robust shoreline survey ground truth data, 2) areas with management 

challenges or beach projects (e.g., nourishments, nearshore berms) and 3) 

areas where traditional surveys may be difficult or costly making 

supplementary satellite data useful.  

 

 

 

 

 

 

 

 

Figure 2. Test sites (stars) chosen in coordination with USACE Districts. DRAFT
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Table 1. Summary characteristics from test sites.  

 Sig. 
Wave 

Height 
(m) 

Avg. 
Wave 

Period 
(sec.) 

Tidal 
Range 

(m) 

Ground 
Truth 

Mgmt. Action 

Lake 
Michigan 

n/a 
(wind 
swell) 

n/a n/a 29 UAV 
topo. 

surveys 

n/a 

Avalon, 
NJ 

0.8 8.3 1.3 11 cross 
shore 
profile 

shorelines 

Nourishments, 
truck hauls 

Stone 
Harbor, 

NJ 

0.8 8.3 1.3 11 cross 
shore 
profile 

shorelines 

Nourishments, 
truck hauls 

Duck, NC 1.0  7.5 1.0 407 cross 
shore 
profile 

shorelines 

Unmanaged 

New 
Smyrna 

Beach, FL 

1.5 8.3 1.4 12 Mini 
Argus 

shorelines 

Nearshore berm 
placement 

Galveston, 
TX 

0.5 5.3 0.9 5 Lidar 
shorelines 

Nourishments, 
berm 

placements 
Padre 

Island, TX 
1.1 6.0 0.9 5 Lidar 

shorelines 
Nourishments, 

groins, 
geotextile tubes 

Imperial 
Beach, CA 

0.9 13.0 2.2 124 DEM 
shorelines 

One small 
nourishment 

Cardiff, 
CA 

1.0 13.6 2.2 124 DEM 
shorelines 

One small 
nourishment, 

rip rap 
Torrey 

Pines, CA 
1.0 13.2 2.2 124 DEM 

shorelines 
One small 

nourishment 
Benson 
Beach, 

WA 

2.2 11.0 3.1 84 DEM 
shorelines 

n/a 

Harvey 
Cedars, 

NJ 

0.9 6.4 1.3 9 cross 
shore 
profile 

shorelines 

Nourishments, 
Nearshore berm 
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3.1 Lake Michigan, Illinois 

In the interest of testing a lacustrine shoreline, the research team 

coordinated with the Chicago District and Michigan State University (Dr. 

Ethan 

Theuerkauf; 

Department of 

Geography, 

Environment, 

and Spatial 

Sciences) to 

obtain ground 

truthed 

shoreline data 

along Lake Michigan. The testing site is located along the southwestern 

shoreline of Lake Michigan in northeastern Illinois and is part of the 

Illinois Beach State Park. The shoreline is composed of sand as a ridge and 

swale complex (Theuerkauf et al., 2019). An outwash deposit was 

reworked around 4,500 years BP into a strandplain beach and has been 

characterized by erosion in the northern portion (this site) and accretion 

to the south through predominant southerly alongshore transport of 

eroded sediment. Sensitive to fluctuating lake levels (Fig. 3), the beach 

ridges have experienced cyclic destruction and formation where low lake 

levels promote growth and high levels trigger erosion (Fraser et al., 1990). 

In the late 1800s, jetties and other stabilization structures were 

constructed to the south to slow the net southerly migration of the beach 

ridge complex (Chrzastowski et al., 1996). After low water levels in the 

early 2000s, the lake rose rapidly at over 0.5 m over six months in 2014 

(Fig. 3, red circle), resulting in accelerated erosion and habitat loss. The 

specific testing site is characterized by a narrow ~10 m beach and a small 

foredune (<1.5 m) which makes it susceptible to overwash (Fig. 4).  

Figure 3. Lake Michigan water level fluctuations since 1900 

from Theuerkauf et al. 2019. 
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Over the six km testing site, 29 

unmanned aerial vehicle (UAV) 

surveys were collected by the 

Theuerkauf group between July 

2018 and January 2021, with the 

goal to evaluate the 

hydrodynamic conditions 

responsible for rapid erosion, 

specifically whether water levels 

alone are the primary control or 

whether certain wave conditions 

are also a significant factor. A DJI 

Phantom 4 Pro quadcopter was 

used to collect high resolution 

imagery (20 megapixel) with 80% 

overlap and Agisoft Metashape 

was used for structure-from-

motion photogrammetry. Ten to 

fifteen ground control points 

were evenly spaced throughout 

the site and were surveyed using 

a Trimble GEO 7X GPS system 

and RMS errors of the 

constructed elevation surface 

were less than 5 cm. Shorelines 

were digitized from these robust 

elevation surfaces based on the 

land/water interface from the edges of the point clouds and ortho imagery.  

 

 

 

 

 

 

Figure 4. UAV imagery collected from the 

beginning and end of the study used for 

ground truth shoreline data. Note the strong 

erosion over the time interval and loss of the 

road (orange arrow).   DRAFT
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3.2 Avalon and Stone Harbor, New Jersey 

Avalon and Stone 

Harbor New Jersey are 

located on a barrier 

island on the Atlantic 

Ocean coast of New 

Jersey, bound by 

Townsends Inlet to the 

North and Hereford 

Inlet to the south (Fig. 

5). During the 

Quaternary Period, sea 

level changes caused 

the spreading of sand 

and gravel deposits 

that have been 

reworked through time. 

The Cape May 

formation in particular 

was deposited along 

valley bottoms and 

estuarine/marine zones 

to form the shoreline 

during the last 

interglacial when sea 

level was ~10 m higher 

than present. The 

average wave height in 

the region is 0.8 m with a wave period of 8.3 seconds (Thompson, 1977). 

The tides are semi-diurnal with a range of 1.3 m (Dally and Osiecki, 2018). 

Subject to major flooding and erosion during storms, a feasibility study for 

mitigation over a 15-mile stretch began in 1992.  The first coastal storm 

risk management (CSRM) project was constructed in 2002 by USACE at 

each town. While a three-year renourishment interval was authorized, 

there was not sufficient federal funding for renourishment until 2016. As a 

federal alternative, the Borough of Avalon, sometimes in partnership with 

the NJ Department of Environmental Protection, placed 2.4 MCY of sand 

between 2005 and 2016 along the erosional hotspot of Avalon (Fig. 5). In 

addition, USACE added truck hauls (2009) and emergency beachfills 

Figure 5. Oblique aerial photograph looking southwest of 

the Avalon, NJ study site.  
DRAFT
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(2011 and 2013) totaling 961,000 CY. The last nourishment of 1,636,685 

CY was conducted in 2017. 

Beginning in 2002, 56 profile lines were surveyed from the dune through 

the depth of closure using a combination of GPS, ATV and boat data for a 

nourishment feasibility study. The ground truth for satellite shoreline 

comparison consists of 11 shorelines collected between 2002 and 2019 

which were generated using the original 56 beach profiles from 2002 with 

the addition of three profile lines.  

3.3 Duck, NC 

Duck is located on a narrow and long barrier island on the Atlantic 

coastline in the northern Outer Banks in North Carolina (Fig. 6). Tides are 

semi-diurnal with a mean range of ~1 m and mean significant wave height 

is 1.0 ± 0.6 m (Lee et al., 1998). Duck is prone to high wave energy in the 

winter from nor’easters, or extratropical systems, and hurricanes in the 

summer and fall months. Dominant longshore transport is from north to 

south and is largely storm driven (Dolan et al., 1988). An artificial dune 

was constructed in the 1930s and 1940s to protect the roadway 

(Birkemeier et al., 1984).  

The U.S. Army Corps 

of Engineers Field 

Research Facility 

(FRF) was constructed 

in Duck in the late 

1970s and has since 

been a world-

renowned coastal 

observation facility 

(Fig. 6). The FRF has 

the unique ability to 

collect data within the 

challenging surf zone 

using amphibious 

vessels and custom 

instrumentation. The 

monthly subaqueous 

and subaerial survey of the property (1 km long) has been a staple of the 

FRF observational record since the early 1980s (Birkemeieir et al ., 1984). 

Figure 6. Duck, NC 2017 beach nourishment. USACE 

Field Research Facility Research Pier is visible in top of 

frame.  
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Profile data from these frequent monthly surveys is highly accurate (~3 cm 

error; Forte et al., 2017) and was used for comparison with satellite-

derived shorelines. Duck was nourished for the first time in 2017 (1.0 

MCY) and the project stopped at the northern property boundary of the 

FRF, allowing for an opportunity to monitor project equilibration and 

longshore diffusion of the added sand.   

3.4 New Smyrna Beach, FL 

New Smyrna Beach is located on a barrier island on the Atlantic Coast in 

central Florida (Fig. 7). Ponce de Leon Inlet is located just north of the 

town and experiences problematic, chronic shoaling, requiring regular 

dredging. This region of central Florida is characterized predominantly of 

Holocene barrier deposits and dominant longshore transport is southerly 

with a seasonal reversal to the north in the summer (Stapor and May, 

1983).  

New Smyrna Beach has 

historically been 

impacted by hurricanes 

and nor’easters, causing 

extensive shoreline 

erosion. From August 

2018 through March 

2019, 350,000 m3 of 

sediment was dredged 

from Ponce De Leon 

Inlet to reduce shoaling 

and was placed via 

pipeline in the nearshore 

of New Smyrna Beach at 

approximately 4 m water 

depth (Fig. 7; Onnink, 

2020). This nearshore 

berm nourishment was 

monitored hourly by 

CHL researchers using a mini-Argus camera system mounted on a high-

rise building consisting of four cameras collecting snapshot, timelapse, 

variance, brightest and darkest imagery from August 2018 to September 

2019 (Fig. 8) (Bruder et al., 2019). Specifically, shorelines were manually 

digitized using the georectified timex imagery following methods outlined 

Figure 7. New Smyrna Beach and location of dredge 

and nourishment activities. Adapted from Bruder et al. 

(2019a).  
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in Bruder et al. (2019). The manual digitization approach is estimated to 

have a precision on the order of 10 m (Onnink, 2020). Timex imagery is 

time-averaged during the collection time (10 minutes) and has been 

successfully used in the past for extracting shoreline positions (Lippmann 

and Holman, 1989; Holman et al., 1993). During the deployment, 

significant wave height was 1.5 m, mean wave period was 8.3 seconds and 

the maximum tidal range was 1.4 m.  

 

 

Figure 8. From Onnink (2020), Timex imagery from the CODS mini-argus deployment 

from (top to bottom) Sept. 1, 2018, Sept. 15, 2018, Nov. 1, 2018, Feb. 2, 2019 

capturing various stages of evolution following the nearshore berm placement. 

“SPAW” represents shoreward propagating accretionary wave. 
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3.5 Galveston and Padre Island, TX 

An extensive study by the Texas Bureau of Economic Geology (Paine et al., 

2021) found significant net coastal retreat on Galveston and Padre Islands, 

TX, both tourist destinations that represent valuable habitat, industrial 

infrastructure and economic resources to the state. Because of the 

shoreline behavior and management challenges, the Galveston District 

(SWG) recommended the sites for satellite testing.  

The Texas Coast is characterized by complex geologic history. The 

shoreline position is a function of multiple related coastal processes 

including sea-level change, land subsidence, sediment influx, littoral drift 

and storm impacts/recovery (Paine et al., 2021). The coastline includes the 

Holocene geomorphic features of barrier islands, strandplains, fluvial and 

deltaic headlands and chenier plains (Aronow et al., 1982; Brown, 

Brewton, and McGowen, 1975; LeBlanc and Hodgson, 1959). Three major 

rivers impact hydrodynamics and sediment supply along the coast (Brazos, 

Colorado, and Rio Grande), although construction of dams for flood 

control and water supply have reduced sediment loads. During the 

Holocene transgression, Galveston Bay formed landward of the barrier 

islands as Pleistocene river valleys were submerged. A convergence zone 

occurs at Padre Island where currents generated from southeasterly winds 

meet the Rio Grande deltaic headland to the south and the Brazos-

Colorado headland to the northeast. Relative sea level rise is a major factor 

influencing coastal processes along the Texas Coast, and the Galveston 

Pier 21 has the longest period of water level record showing a long-term 

rate of sea-level rise of 6.55 mm/yr (between 1904 and 2019). The Texas 

Coast has been impacted by a plethora of tropical storms through time, 

notably Hurricane Ike (2008) and Hurricane Harvey (2017).  

According to district records, a total of 20 beach projects have been 

conducted between 2000 and 2021 for Galveston and Padre Island 

beaches. Of these projects, five included placement of less than 6,000 CY. 

Three projects were related to dune construction and the placement of 

geotextile tubes (2000, 2007, and 2009). The largest project was 

conducted in 2017 involving one MCY yards of nourishment throughout 

the Galveston groin field. At South Padre Island, a total of 15 beach 

projects were completed between 2000 and 2021.  Of those, seven were 

berm placements and eight were nourishments. Placement volume ranged 

from 220,000 CY to 500,000 CY. The eastern portion of the Galveston 
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shoreline includes a series of groins for sediment capture, which has 

created distinct shoreline configuration (Fig. 9). 

Shoreline positions were 

extracted from airborne 

lidar topographic 

datasets from 2010, 

2011, 2012, 2016 and 

2019 (Paine et al., 2021). 

Shorelines were 

delineated at an 

elevation contour from 

the 1-m resolution DEM 

that approximate the 

wet beach/dry beach 

boundary consistent 

with historical use in 

shoreline studies. This 

wet/dry interface was 

checked by superimposing the lidar data on georectified National 

Agricultural Imagery Program aerial imagery (Paine et al., 2021). Lidar 

data was georeferenced and compared to GPS-derived ground control 

points and calibration targets. All lidar surveys were flown in late winter or 

spring, other than the 2016 survey that was conducted in fall.  

3.6 San Diego Beaches, CA 

In coordination with USACE, Scripps Institute of Oceanography has 

collected long-term, high resolution subaerial and subaqueous coastal 

monitoring datasets. In 2019, Ludka et al. published a summary paper and 

released a dataset covering three reaches of San Diego coastline (Torrey 

Pines, Cardiff and Solana). The data span between eight to 16 years (2001 

– 2016) and spatial extents vary from 4.2 to 7.9 km in the alongshore. For 

this work, monthly to quarterly topographic surveys at 100 m spaced 

cross-shore transects were used to extract the shoreline position for 

comparison to satellite data. 

This region of coastline is hydrodynamically and geologically complex 

(Ludka et al. 2019). Rocky headlands, nearshore submarine canyons and 

offshore shoals contribute to alongshore wave variability, in addition to 

the nearby Channel Islands that create shadowing and refraction effects 

Figure 2V visitgalveston.com. Note the sinuoisty, wet 

dry, jetties, etc 
Figure 9. Oblique aerial image of Galveston Island. 

Note the numerous jetties. 

DRAFT



19 

 

 

over variable shelf bathymetry. Generally, the winter season produces the 

most energetic waves from the North Pacific and promotes southerly 

longshore sediment transport and the milder summer South Pacific swell 

causes shoreward and northerly transport. Seacliffs back much of the 

coastline and are composed of a bottom unit of lithified Eocene and 

Miocene mudstone, shale, sandstone, and siltstone, and a top unit 

consisting of unlithifed Pleistocene terrace deposits. Cobbles are 

intermittently exposed along the beaches, most often when beach sands 

are eroded (Ludka et al., 2019).  

The Torrey Pines stretch contains reef, a lagoon mouth and the landward 

tip of the Scripps Submarine Canyon. In 2001, monitoring was initiated to 

capture the evolution of a subaerial beach nourishment project 

constructed in 2002 to protect an adjacent major roadway. Data showed 

rapid (monthly) transport of the nourished sediment to an offshore bar 

followed by the partial return of the sediment through onshore transport 

in the summer. Much of this region is characterized by cobble (Fig. 10). 

The majority of Cardiff and Solana also contain reef and have lagoon 

mouths at the northern and southern boundaries. While Solana is backed 

by cliffs, Cardiff contains rip rap to stabilize the roadway and parking lots 

that are often flooded (Fig. 10). In 2012, both beaches were nourished and 

observations showed minimal loss of the sediment from the subaerial 

beach over the course of a few years.  

Imperial Beach contains the Tijuana River Mouth and offshore cobble 

shoal to the south, along with a recreational pier and two short jetties (100 

– 150 m) to the north. Some homes are protected by rip rap and small 

dunes (Fig. 10). This beach was also nourished in 2012 and had similar 

success to Cardiff and Solana, yet eventually the nourished material was 

transported to the river mouth causing problematic clogging and 

consequent degradation of water quality in the estuary (Ludka et al., 

2019).  
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Figure 10. Low tide photos of Cardiff, Torrey and Imperial Beaches from Ludka et al. 

2019. 

 

The subaerial survey data were collected with an ATV (shocks removed, 

constant tire pressure) at low tide in combination with a push dolly, both 

outfitted with high precision Global Navigaton Satellite System (GNSS). 

Subaqueous data was acquired with a personal watercraft outfitted with a 

192 kHz acoustic sonar, a sea surface thermistor for speed of sound 

calculations and GNSS antenna. The combination of the three methods 

ensured continuous profile overlap across the surf zone (Ludka et al., 

2019). 

3.7 Benson Beach, WA 

The high wave energy coupled with large sediment-laden river systems in 

Washington State creates many dynamic coastlines. With input from 

several district engineers, Benson Beach at the mouth of the Columbia 

River (Fig. 11) was selected for satellite validation, primarily due to dense 

data availability over the past two decades and history of challenges in 

managing the stretch of coast. Beginning in 1996, the Washington 

Department of Ecology in conjunction with the U.S. Geological Survey and 

Oregon State University spearheaded a comprehensive coastal monitoring 

program for the state, generating frequent high resolution morphology 

datasets. The primary goals of the study were to “improve scientific 

understanding of coastal morphodynamics and sedimentary processes, to 

determine natural and anthropogenic influences of the littoral system, and 

to provide information and predictions of coastal behavior at temporal 

scales of decades and spatial scales of tens of kilometers (Kaminsky et al., 

1997; Gelfenbaum et al., 1997; Kaminsky et al., 1999; Ruggiero et al., 

2005). In addition, these data enable the testing and development of 

hydrodynamic and sediment transport models in the region.  
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The Columbia River Littoral Cell (CRLC) extends between Tillamook 

Head, OR and Point Greenville, WA. Two large estuaries, Willapa Bay and 

Grays Harbor, lie to the north. A relatively slow rate of eustatic sea-level 

rise ~6,000 years ago caused the formation of modern barrier islands and 

strandplains as the shelf and estuary filled (Kaminsky et al., 2010). 

Beaches began to prograde about 4,500 years ago. Situated along an active 

tectonic margin, earthquakes have caused coastal subsidence and 

shoreline retreat over an estimated 500-year recurrence interval 

(Kaminsky et al., 2010). Yet despite the seismic influence, the coastlines 

have been net progradational due primarily to high sediment load 

delivered from the Columbia River that is redistributed by the strong wave 

climate. The Pacific Northwest is notorious for a severe wave climate, 

generally producing ~10 m high and (Hs) long period (13 seconds) winter 

storm waves at least once annually. The combination of high wave climate 

and fine-grained sands gives the CRLC a morphodynamic classification of 

‘modally dissipative’ (Wright and Short, 1983; Ruggiero et al., 2005), 

dominated by low-frequency infragravity energy in the nearshore zone. 

Tides are mixed semi-diurnal ranging from 2 to 4 m (mesotidal). Driven 

by winter wave/wind energy, the net sediment transport is to the north 

(Kaminsky et al., 2010).   

 

Figure 11. Benson Beach with Columbia River jetty in the background. Notice the 

narrow, steep beach and storm-deposited debris.  
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The comprehensive monitoring program contains the primary 

components of cross-shore topographic beach profiles, 3-D topographic 

beach surface maps and nearshore bathymetry. For this study, researchers 

obtained 84 beach surface maps collected roughly bi-annually to quarterly 

from 1997 to 2019. The site was nourished in 2002 (43,000 CY). Data 

were collected with an all-terrain vehicle (ATV) equipped with survey 

grade D-GPS receiver, GPS antenna, Radio modem, radio antenna, data 

logger, and cabling to the RTK backpack that is also used for typical beach 

profile surveys. Differential corrections were provided by a geodetically 

fixed RTK GPS base station. Data points were densely spaced in the 

alongshore to resolve small scale features (e.g. cusps, berms) and cross-

shore transect spacing was on the order of ~10 m, although drivers used 

discretion to determine the most optimal path for capturing the variability 

of features. The ATV data collection spanned from the foredune toe to the 

swash zone. Data were manually checked for quality, then Matlab scripts 

were used by Washington Department of Ecology to map non-uniformly 

spaced raw data onto a 2-D gridded surface through weighted linear 

interpolation. Comparisons with robust beach profile surveys show that 

the vertical RMS error of the ATV interpolated beach surface is typically 

less than 5 cm in the horizontal dimension and 10 cm in the vertical 

dimension. 

3.8 Harvey Cedars, NJ 

Harvey Cedars is located on a barrier island on the Atlantic Coast in 

central New Jersey. The beach is roughly 3 km long and faces 

east/southeast. Average wave heights in the region are 0.9 m and average 

wave period is 6.4 s (Cialone and Thompson, 2000). The tides are semi-

diurnal with a range of 1.3 m (Dally and Osiecki, 2018).  

Identified as an erosional hotspot, Federal Coastal Storm Risk 

Management (CSRM) has constructed groins and the first project in 2010. 

Since this project, three renourishments have followed including 

emergency repair from the impacts of Hurricane Sandy. The last, most 

recent management project at Harvey Cedars was the emplacement of a 

nearshore berm. In the summer of 2021, 83,300 m3 was dredged from 

Barnegat Inlet and placed in the nearshore (- 2.75 m NAVD88 depth) of 

Harvey Cedars by the Philadelphia District (NAP). WRDA’s Sect. 1122 

program supports experimental beneficial use projects such as this effort. 

Nine topographic and bathymetric surveys conducted during this project 

serves as ground truth for satellite comparisons. RTK-GPS and single 
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beam transects were spaced every 75 m (26 total) and combined to create 

DEMs. Work to analyze the evolution of the placement is ongoing using in 

situ hydrodynamic sensors and satellite-derived shorelines (McGill et al., 

2022; accepted). 
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4 Instantaneous Shoreline Comparisons 

A primary goal of this effort was to quantify the accuracy of CoastSat using 

ground truth data from test sites across the nation. Overall, across all sites 

the mean horizontal difference from the ground truth shorelines was 14.1 

m (Fig. 12). However, Fig. 12 highlights the variability in the skill where 

mean horizontal differences from ground truth ranged from  4.8 m to 32.0 

m. Interestingly, individual sites within the same study area also 

performed at varying accuracy. For example, mean horizontal differences 

at adjacent sites on South Padre Island ranged from 4.79 m to 21.31 m(Fig. 

12). The Lake Michigan region also exhibited variabilty in accuracy 

performance with a range of 9.09 m to 17.84 m in mean horizonal 

difference. This regional variabilty in accuracy may be due to several 

potential factors including image coregistration differences across the 

region.  

The results of this work use output from CoastSat v1. During this effort, 

our research team and the CoastSat creator (Vos, 2022, per. 

communication) each discovered co-registration issues related to Google 

Earth Imagery ingestion that was essentially rounding area of interest 

polygons and resulted in offsets among satellite missions. This issue has 

since been partially corrected in CoastSat v2. 

Figure 12. Summary of mean horizontal difference (offset) of satellite-derived 

shorelines compared to ground truth surveys across test sites. Orange stars indicate 

sites with apparent Google Earth Engine imagery issue that will be omitted from 

subsequent analysis. 
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This mission offset can be visualized in Fig. 13. Within geographic regions 

some 3 km sites showed good alignment between satellite missions, while 

others showed mission offsets, some of which were significant (~20-40 

m). An example of this is shown in Fig 13a, b from South Padre Island 

where Padre3 (panel a) shows no apparent issue and adjacent Padre4 

(panel b) shows an offset between Sentinel-2 (blue) and Landsat-8 (red). 

This is likely a driving factor in differences in instantaneous shoreline 

accuracy at those sites (mean horizontal differences at Padre3 = 12 m; 

Padre4 = 19 m). In the case of Padre 4, the Sentinel-2 (blue) data seem to 

align with the ground-truth, whereas Landsat-8 data are offset as a 

separate population. Panel c of Fig. 13 shows a similar issue at Harvey 

Cedars, also with poor satellite shoreline accuracy (30 m mean horizontal 

difference). Overall, 13 out of 37 sites displayed this issue. Vos (personal 

communication, 2022) was able to determine the mission offset issue 

stems from Google Earth Engine (GEE) imagery download. It is 

hypothesized that when the CoastSat user draws an AOI polygon for a site, 

the GEE rounds the pixel coordinates, and returns a slightly shifted image, 

resulting in offsets at some sites. It is unclear why this happens for some 

sites and not for others. This has been addressed for LandSat-8 in 

CoastSat 2.0 through new imagery download and preprocess functions 

that provide better alignment between panchromatic and multispectral 

bands. The CoastSat 2.0 update does not yet include the shift fix for 

Sentinel-2. Coloring shoreline positions through time by satellite mission 

should provide the user a quick assessment tool to determine if this offset 

is a problem for their site of interest.  

Sites where this problem is evident have been starred in Fig. 12. Since this 

report focuses on the performance of the CoastSat algorithm, and the issue 

is associated with Google Earth Engine, we have omitted results from the 

problematic sites from subsequent analysis. When these sites are not 

included, the overall mean horizontal difference between satellite-derived 

shorelines and ground-truth shorelines is reduced to 11.32 m. 
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Figure 13. Shoreline positions through time for Padre3 (a), Padre4 (b) and Harvey 

Cedars Pilot (c). Points are colored based on satellite mission. Notice good alignment 

across missions in panel a, and misalignment of Landsat-8 (red) and Sentinel-2 (blue) in 

panels b and c.  
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In terms of bias, results show a mean direction of -3.51 m (SD = 12.57 m), 

indicating a slight onshore bias for the satellite-derived shorelines when 

compared to survey-derived shorelines. Specifically, 37.5% of sites were 

biased towards the offshore and 62.5% of sites were biased in the onshore 

direction.  

At Duck, we found a shoreline position RMSE of 8.50 m, which is 

consistent with Vos et al. (2019) who reported a RMSE of 9.0 m. It should 

be noted that Vos et al. (2019) conducted comparisons at a single transect 

and our comparisons extended 1-2 km in the alongshore, depending on the 

length of the FRF survey at specific times. Fig 14 provides visual examples 

of low and high shoreline position accuracy time intervals at Duck. An 

example of the consistent landward shoreline bias at Duck is evident in Fig 

14 (right panel) where a mean horizontal difference from ground truth in 

shoreline position of 21.1 m is visible.  

 

Figure 14 Examples of high and low accuracy satellite shorelines relative to ground 

truth surveys at Duck. Note the crossing shorelines in the left panel. 
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4.1  Satellite Mission Comparisons 

Since CoastSat ingests Landsat and Sentinel imagery, we examined each 

satellite mission separately for accuracy and bias for all sites. Each satellite 

mission shows a different bias where negative values indicate shoreward 

direction bias and positive values reflect seaward bias (L5 = -6.93 m, L8 = 

-1.21 m, S2 = 1.90 m)(Fig. 15). The mean horizontal difference from the 

reference shorelines was L5 = 10.52m, L8 = 10.57m, S2 = 8.86m (Fig. 15). 

With each generation of satellite, bias and mean horizontal difference 

decrease. Landsat 5 and 8 have a mean horizontal difference that is 53 and 

58%  lower than the native short-wave infrared (SWIR)  resolution of 30 

m, respectively. The mean horizontal difference for Sentinel 2 is 41% lower 

than its SWIR resolution of 20m. 

 

Figure 15. Mean horizontal differences in satellite shorelines from ground truth for 

different satellite missions. Negative values represent the landward direction and 

positive values are seaward relative to ground truth surveys. The absolute shoreline 

offset panels disregard the directional biases.  
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4.2 Image Co-registration 

One of the major challenges of using satellite images to track 

environmental conditions through time is the imprecise georeferencing 

accuracy for the images themselves in addition to the differences in 

georeferencing accuracies when utilizing multi-sensor datasets. While 

Landsat 7 has a reported image registration accuracy (LE90) of 12.0 m 

(Storey et al. 2014) and Sentinel-2 has a reported image registration 

accuracy of 12.5 m (Trémas et al. 2015), Storey and others (2016) estimate 

that the sensor data can be misaligned by 38 m. One of the challenges 

involved in co-registering the images is the quantity and spatial extent of 

images used in remote sensing applications such as this, causing it to be 

temporally and computationally expensive (Scheffler et al. 2017).  

There are multiple strategies when aligning imagery which can be 

simplified into two main groups – intensity-based and feature-based. 

Intensity-based techniques rely on similar patterns of grey values in the 

image, while feature-based processes look for specific identifiable objects. 

Feature-based processes tend to be less computationally and temporally 

expensive, but require features to be evenly distributed throughout the 

image which can be difficult to rely on in coastal environments.  Because 

of this, applying intensity-based processes to the imagery was investigated 

in this study. Intensity-based processes are more computationally 

expensive, but do not rely on distinguishable features and can achieve sub-

pixel shifts (Scheffler et al. 2017, Priyanka et al. 2020).  

Two co-registration tools were investigated using satellite images of 

Wrightsville Beach, NC; AROSICS and the Arcpy georeferencing tool. 

Wrightsville Beach was not included in the statistics of the report, but it is 

an area of interest as it lies just east of the Wilmington District. AROSICS, 

which stands for Automated and Robust Open-Source Image Co-

Registration Software for Multi-Sensor Satellite Data, is an intensity-based 

registration technique using phase correlation. While this tool is open-

source and python-based, multiple problems arose when trying to 

integrate this tool into the CoastSat workflow. It is anticipated that the 

imagery format, as downloaded from GEE and different per mission, 

caused difficulties when using AROSICS to co-register the whole dataset 

together. Instead, images could only be registered to its same missions’ 

baseline. In theory, this would still perpetuate the known offsets between 

missions (38 m). There are two functions in the AROSICS package, 

COREG and COREG_LOCAL. COREG applies a global X/Y translational 
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shift to the image, whereas COREG_LOCAL creates a dense grid of tie 

points, filters the tie points for false positives, and uses the valid tie points 

to fine-tune the parameters in an affine transformation. A cubic 

resampling technique is applied to finally warp the image. Because spatial 

offsets between images are highly varying, COREG_LOCAL was applied to 

the imagery. This process was very computationally expensive and would 

require many hours to complete the whole Sentinnel-2 dataset for 

Wrightsville Beach (91 images). Additionally, the subsequent efforts to 

map the shoreline from the co-registered image using CoastSat were 

unsuccessful.  We believe this is because the SWIR band was not co-

registered along with the RGB bands. This would cause the supervised 

classification to resemble the co-registered image, but the MNDWI would 

have artifacts resembling the original image. This prompted investigation 

of other methods to co-register the dataset.  

Arcpy was a much simpler tool to 

integrate into the workflow and was 

much faster, on the scale of minutes 

(about 0.5 seconds an image for a total 

of 45.5 seconds for the 91 images) 

versus hours to co-register all of the 

Sentinnel-2 images in the test site to a 

base image with low initial registration 

error as evident in the metadata. 

Arcpy generates tie points (Fig. 16) 

from an intensity-based approach and 

then fits a first-order polynomial 

transform to warp the image (Fig. 17). 

The difference between the raw and 

co-registered, an example of which is 

shown in Fig. 17C, was typically subtle 

and can be detected mostly in shifts of 

bright infrastructure. Because 

Sentinel-2 has worse georeferencing 

and to save time for the end user, this process was applied to just the 

Sentinel 2 images from the test site to investigate the impact it had on the 

shoreline positions mapped using the CoastSat algorithm (Fig. 18).  

 

Figure 16. Wrightsville Beach image with 

tie points shown in red and green B's. 
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As shown in Figure 18, in the northern portion of transect 1140, the mean 

position was shifted landward (down) from the raw shorelines (dark blue) 

to the co-registered shorelines (light purple).The detrended standard 

deviation for transect 1140, a proxy for noisiness, was reduced from 9.90 

m to 8.99 m after co-registration. In addition, the shoreline change rate 

changed from -4.6 meters per year to -4.4 meters per year. The southern 

transect (transect 1030) shows a similar change in mean shoreline position 

and noisiness. The detrended standard deviation for transect 1030 was 

reduced from 12.17 m to 9.99 m after co-registration. The shoreline change 

rate at transect 1030 changed from -1.88 meters per year to -0.56 meters 

per year. As shown in these two transects along Wrightsville Beach, if 

appropriate tie points are picked, the spread of shorelines could be 

reduced, thus decreasing the noise of the satellite-derived shoreline 

positions and potentially leading to lower RMSE and a better depiction of 

historical shoreline movement. 

After seeing a reduced spread of shorelines, the same process was applied 

to the Duck Sentinel-2 images. Unlike Wrightsville Beach, Duck has an 

ample amount of ground-truth data that we can compare to our co-

registered shorelines quantitatively. Using the ArcPy newly co-registered 

S2 images (n=548), the associated mean horizontal difference in satellite-

derived shorelines compared to ground truth only improved by 6 cm. This 

minimal improvement in accuracy suggests mission to mission (e.g. 

Landsat-8 vs. Sentinel-2) co-registration may be more critical than intra-

mission, though more tests are needed at additional sites with good 

ground-truth data. Furthermore, if the seed or base image used for co-

Figure 17. A) unregistered image of Wrightsville Beach B) a co-registered image of 

Wrightsville Beach using ArcPy C) the difference in the two images scaled to a factor of 10. 
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registration has high georeferencing error, matching other images to the 

base image may even increase overall errors. Thus, it is critical to ensure 

your baseline image has high-accuracy. While it is not practical within the 

current AROSICS or ArcPy framework, a potential improvement may be 

using a high-resolution base image to register other imagery with, such as 

UAV image or higher resolution satellite image (e.g. PlanetScope).  

 

 

 

 

 

 

 
Figure 18. Left) Wrightsville Beach with the cross-shore transects used to analyze 

shoreline change; Top Right) Shoreline positions from unregistered and co-registered 

imagery at transect 1140 and their respective trends; Bottom right) Shoreline 

positions from unregistered and co-registered imagery at transect 1030 and their 

respective trends. DRAFT
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4.3 CoastSat-generated Slopes 

To correct visually identified shorelines to a consistent datum-based 

shoreline, the tide level and slope are used in CoastSat. Beach face slope is 

a fundamental parameter for coastal research related to shoreline change, 

runup and flooding, yet it often varies through time and is difficult to 

quantify without conventional field observations. Vos et al. (2020) added 

the automated capability to extract slopes from historic satellite imagery 

through the CoastSat.Slope toolbox. Vos et al. (2020) found good 

agreement (R2 = 0.93) with the approach compared to field observations 

at eight sites across the globe.   

We tested the CoastSat.Slope 

function at the district test sites 

and compared the output to field 

survey slopes, where robust slope 

data was available. It is important 

to note that even field-based 

surveys are only capturing slopes 

at one point in time and, in 

reality, slopes are likely time 

varying. Fig. 19 shows the 

comparison of CoastSat-derived 

vs. user input slopes (i.e., 

measured) with poor agreement 

(R2 = 0.24) for the test sites.  

To investigate how slope influences shoreline accuracies, results using the 

CoastSat-derived slopes were compared to results using the field-

measured slope (Fig. 20).  Using CoastSat derived slopes caused slightly 

higher errors at 59% of our study sites, however, overall the horizontal 

differences in satellite versus ground truth shorelines was minimal (0.24 

m) when compared across all sites (Fig. 20). Considering these results, at 

most sites, especially where conventional slope data is unavailable, the 

CoastSat slope function can be reliably used for shoreline extraction, 

despite its likely poor representation of true slope, which suggests at least 

at the sites tested here, slope does not exert a strong control on shoreline 

position accuracy. Notably, Vos et al. (2019) found no significant 

improvement of shoreline accuracy by using time-varying slopes instead of 

a time-averaged slope at Narabeen, AU. Furthermore, at the same site  

Figure 19. CoastSat-generated slopes versus 

user-selected slopes.  
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using CoastSat.PlanetScope, Doherty et al. (2022) found using time-

varying beach slope decreased shoreline position accuracy.  

 

Figure 20. Summary of shoreline offsets for CoastSat-generated slopes (blue) and 

user-selected slopes (red). 

 

4.4 Tidal Correction Influences 

Shoreline position also fluctuates depending on the tidal stage. We 

assessed the influence of the tidal correction on shoreline positional 

accuracy in part because some users may be located in areas that do not 

have hydrodynamically proximal water level gages or predictions. Also, if 

the tidal correction only provides minimal shoreline accuracy 

improvement, users could opt to forego the tidal correction step.  
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For context, the study sites spanned a tidal range between 0.74 m and 3.10 

m. And for clarification, the Great Lakes sites have no tides so the tidal 

corrections were not evaluated. Overall, the tidal correction lowered the 

mean shoreline position error at 82% of the sites (Figs. 21 and 22) with a 

reduction of -1.24 m in mean horizontal difference between satellite and 

ground truth shorelines. The largest accuracy improvements from tidal 

corrections occurred at three mesotidal sites: Avalon, NJ (- 4.22 m), Stone 

Harbor, NJ (- 2.75 m), Cardiff (-2.71 m); the microtidal Galveston (-3.36 

m), and the macrotidal site of Benson Beach, WA (2.32 m).  

 

Across sites for all reference times the mean horizontal difference was 

12.45 m without the use of tidal correction (Fig. 21). When tides were 

corrected with the built-in CoastSat.Slope function to determine the beach 

slope along which to shift the shoreline, the mean horizontal difference 

was reduced 11.0 percent to 11.08 m. With the inclusion of a user given 

slope, determined by ground truth data and associated reports, the mean 

horizontal difference is reduced to 11.21 m. With the use of user estimated 

slopes and tidal correction sites varied from 4.2 to 20.6 meters of 

horizontal difference between the satellite derived shorelines and the 

reference data.  

Figure 21. Bar plot showing satellite shoreline position accuracies without any tidal 

correction (blue), with a tidal correction using CoastSat slopes and tidal correction with 

user slopes.  DRAFT



36 

 

 

It is important to note that 

finding an open coast tidal 

station that is hydrodynamically 

proximal to your study site is 

crucial for proper tidal 

correction. We initially used an 

automated approach to select 

simply the closest tidal stations 

to each site; however, several of 

those selections were in inlets, 

bays or inshore which resulted 

in high shoreline position errors 

since the timing and magnitude 

of the tidal correction in those 

areas are not reflective of the 

open coast.  

We also examined shoreline 

accuracies relative to different 

tidal ranges.  When the tidal range 

is combined with the site slope to 

calculate a horizontal distance, or 

horizontal tidal envelope, there 

appears to be a weak correlation 

with satellite shoreline accuracy, 

where generally larger horizontal 

tidal envelopes have higher 

shoreline position error (Fig. 23). 

Furthermore, Figure 23 highlights 

the general trend in slightly lower 

shoreline errors associated with 

user versus CoastSat slopes.  

Lastly, we assessed shoreline positional error relative to tidal range and 

satellite mission. Figure 24 shows no apparent link with these parameters. 

Coincidentally, Landsat 5 encompassed the majority of our comparisons of 

satellite-derived shorelines and ground truth surveys at lower tide range 

sites (Fig. 24).  

Figure 22. Impact of tidal corrections where 

grey positive values reflect the amount of 

improvement in meters after a tidal 

correction. Reds represent instances where 

tidal correction decreased accuracy, 

Figure 23. Shoreline offset versus 

horizontal tidal range generated from 

CoastSat slopes (red) and user slopes 

(blue).  
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Figure 24. Shoreline offsets across all sites relative to tidal range and satellite 

missions.  

  

4.5 Wave Runup Corrections 

While CoastSat incorporates tidal corrections based on image capture 

time, it does not account for wave processes and high frequency swash 

motions (i.e. setup, runup, rundown, infragravity). An instantaneous 

satellite snapshot may occur during wave runup or rundown, yet this is not 

known, thereby leading to challenges in integrating a wave correction. 

Furthermore, wave and swash processes generally vary alongshore, adding 

even more complexity (e.g., Stockdon et al., 2007). To address these 

concerns, we focused on five sites with robust available wave data and 

frequent reference data – Duck, Benson Beach, Cardiff, Imperial and 

Torrey Pines North.  
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Likely due to the 

high frequency of 

swash motions, 

results showed 

adding adjustments 

for runup improved 

shoreline accuracy 

at 60% of the sites 

(Figs. 25 and 26). 

We suspect that this 

is in part due to the 

randomness of 

waves relative to 

image capture 

time. Furthermore, 

adding wave runup 

offsets effectively 

can only shift a shoreline more seaward, so if it was already too far 

seaward, runup would exacerbate the shoreline position accuracy. Figure 

26 shows that when combining the site slope with runup to create a runup 

envelope, roughly half of the ground truth comparisons improve in terms 

of accuracy and the other half have higher shoreline offsets. Future work 

could explore creating a shoreline 

position envelope based on the 

tide elevation + setup +/- S/2, 

where S is the significant swash 

height from Stockdon et al., 

2006, for example. Satellite 

shorelines could then be assigned 

a potential water-level related 

uncertainty and considered 

accurate if surveyed shorelines 

fell within this envelope. 

We also evaluated runup 

corrections during different 

seasons (Fig. 27) and wave 

conditions (Fig. 28). Figure 27 

shows some weak correlation 

between seasons and shoreline accuracy where the better accuracies are 

Figure 25. Results of runup corrections at five test sites. 

Red indicates user slope with no runup correction, green 

is user slope with runup correction, blue is CoastSat 

slope with no runup correction and light blue is CoastSat 

slope with runup correction.  

Figure 26. Shoreline offsets (m) for all 

runup test sites versus horizontal wave 

runup envelopes (m).  
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found during summer months and the lower accuracies are during the 

stormier winter season. Based partly off seasonal trends and results of 

Figure 28, we considered implementing runup corrections only during 

stormy intervals, yet determining a specific wave height threshold is also 

challenging and would likely need to vary site by site. At Duck, for 

example, implementing runup correction only when waves were > 1.5 m, 

caused overall improvement of 0.5 m (9.6 m to 9.1 m) in mean horizontal 

difference between ground truth and satellite shorelines. Yet, Figure 28 

shows there is no clear link of shoreline accuracy improvements from wave 

corrections in high and low wave conditions at other sites. Past work 

aimed at reducing noise in swash motions has used composite images 

averaged over long time intervals or elevation correction models  

Figure 27. Average monthly wave height (m) versus mean shoreline offset (m) 

across five runup correction test sites.  
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(Almeida et al., 2021; Bishop-Taylor et al., 2021; Luijendijk et al., 2018). 

Castelle et al. (2021) used CoastSat at Truc Vert, France and applied an 

elevation correction model which was successful in reducing satellite-

derived shoreline position error by half. However, this is in part attributed 

to the slope (0.05), interannual variability in waves (Hs of 1.1 m in 

summer and Hs of 2.4m in winter), and meso-macrotidal regime (tidal 

range up to 5 m) which make runup effects more pronounced at this site. 

On the contrary, using CoastSat with PlanetScope imagery (3 m 

resolution) at Narabeen-Collaroy, Australia and Duck, NC, Doherty et al. 

(2022) found implementing time varying runup only caused negligible 

improvements on satellite-derived shoreline accuracy (<1%). Doherty et al. 

(2022) suspect the results are due to the steeper nature of the coastline 

(average intertidal slope of 0.09), less interannual wave variability and 

microtidal regime (mean spring tidal range of 1.3 m), that make the 

shoreline less susceptible to large horizontal movements of swash 

motions. More research is still needed to determine if these cases of runup 

correction are site specific.  Not having to account for wave processes 

Figure 28. Summary for runup corrections at all five sites where the y-axis is mean 

shoreline satellite position error and x-axis is wave height. The dot/arrow 

combinations show the magnitude of error increase (red) and decrease (black) where 

the dot represents the initial shoreline error prior to runup correction.  
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would be advantageous since nearshore, high resolution wave data may 

not be available or difficult to obtain in many locations.  
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5 Shoreline Trend Comparisons 

In this chapter we examine the twenty-year trends derived from satellite 

imagery and compare them to ground truth data. We first explore how 

accuracy varies with time, then discuss the trends in more detail at 

selected sites. Specifically, we address how satellite trend data can be used 

to monitor subaerial equilibration and evolution of different coastal 

management strategies and for storm impact/recovery assessments.  

5.1 Temporally Variable Confidence  

After examining the accuracy of the 

individual shorelines, the ability to 

estimate shoreline evolution trends 

from the collection of shorelines 

was assessed. To do this, the slope 

of the shoreline position relative to 

the transect root as a function of 

time was assessed for every 

combination of reference survey 

times, inclusive of surveys 

occurring between those pairs. A 

corresponding set of shorelines was 

selected from the satellite derived 

collection spanning the same time 

period. Figure 29 illustrates this concept where both short and long trends 

were compared to reference data. 

Figure 29. Schematic representing the 

way in which different time interval 

trends (blue) were examined relative to 

reference data (red crosses). DRAFT
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As the number of passes included in the subset of the collection increased, 

the accuracy of the trend improved rapidly (Fig. 30). With a subset 

encompassing 200 days of data, the mean difference in the trend was -3.10 

m/yr, with a standard deviation of  44.07  m/yr (Fig. 30). With a subset 

encompassing 650 days of data, the mean difference in the trend was -

0.04 m/yr, with a standard deviation of less than  9.74  m/yr (Fig. 30). 

These trend accuracies related to time may be important to consider for 

certain users when selecting time intervals.  Examples of the shoreline 

trends and management applications of these data are explored at select 

sites in the following section. We will show satellite-derived shorelines are 

able to quantify annual cycles, response to nourishment and storm events, 

and long term trends, all of which can improve management of coastal 

resources.   

 

 

5.2 Harvey Cedars 

The Harvey Cedars test site is characterized by a narrow beach from 2000 

to 2008 with interannual variability likely driven by seasonality (Fig. 31). 

During this interval, the satellite-derived data show poor alignment with 

ground truth data with an offset of ~25 m, likely due to the GEE mission 

offset issue. However, post-2010, the data show good agreement, 

Figure 30. Trend differences (m/yr) of satellite-derived shorelines compared to 

ground truth shorelines relative to time in (years). The second panel is a zoom of two 

years. 
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especially during beach nourishment projects. From the satellite data, we 

can easily quantify changes to the beach in response to management 

actions. The first major beach nourishment (2,991,805 CY) during the 20-

year study period was conducted in 2010, showing a pronounced increase 

in beach width on the order of 110 m. After the project was constructed, 

equilibration was accelerated by Hurricanes Irene (2011) and Sandy 

(2012). Over a period of 2.8 years, the beach width was reduced by 

 

Figure 31. Twenty-year shoreline trends at Harvey Cedars Pilot site.  

 

116.1 m to pre-project width, at a high rate of -41.76 m/yr. Following 

Hurricane Sandy, an emergency repair nourishment was conducted which 

returned the beach to roughly the 2010 post-nourishment width. Shoreline 

retreat at a rate of 19.35 m/yr followed but the beach remained ~20 m 

wider than the period from 2000-2008. The last nourishment occurred in 

2018 and by 2.4 years later had equilibrated to pre-repair beach width (-

18.78 m/yr).  The satellite-derived shoreline record thus can be used to 

demonstrate and quantify the impacts of coastal management on the 

DRAFT



45 

 

 

shoreline position.  Specifically, that active nourishment and coastal 

management has resulted in a beach that is on average 20-m wider in the 

last 10 years when compared with the un-nourished beach, even during a 

period which saw an extreme storm.  These data can help communicate 

the value of active coastal management and enable decision makers to 

evaluate if the costs are worth the benefits.   In addition, the long satellite 

record can be used during feasibility studies to quantify the background 

natural variability to the system prior to funded monitoring efforts. 

The last, most recent management project at Harvey Cedars was the 

emplacement of a nearshore berm as beneficial use of dredged material 

from a federal navigation project in response to an erosional hotspot 

identified by the Federal Coastal Storm Risk Management (CSRM) project. 

In the summer of 2021, 83,300 m3 was dredged from Barnegat Inlet and 

placed in the nearshore (2.75 m depth) of Harvey Cedars. Work to analyze 

the evolution of the placement is ongoing using in situ hydrodynamic 

sensors and satellite-derived shorelines (McGill et al., 2022; accepted). 

Preliminary results show a lagged widening of the shoreline at the adjacent 

beach of 5-10 m (Fig. 32). These satellite data can potentially reduce the 

costs associated with monitoring coastal management actions and are 

capable of capturing the shoreline response from a small scale engineering 

project.  

Figure 32. Harvey Cedars satellite shoreline trends within the nearshore berm 

placement zone (purple), below (south) the placement site (blue) and above (north) 

the placement site (yellow).  
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5.3 South Padre Island, TX 

The South Padre Island test site is an example of the paucity of available 

ground truth survey data to districts. When compared to the five reference 

shorelines, the satellite derived shoreline positions and trends align well, 

showing a long-term accretion trend at the site (Fig. 33). The satellite data 

allows for a much more complete depiction of the shoreline evolution at 

the site. For example, the gap in survey data between 2012 and 2016 fails 

to capture the interannual/seasonal beach width fluctuations that are on 

the order of 10 m (Fig. 33). In addition, between the last two ground truth 

shoreline data points, the maximum beach width excursion over the two-

decade period is missed.  

From a coastal engineering and management perspective, the utility of 

Satellite-derived shoreline monitoring is evident. Most nourishments at 

South Padre Island were small to medium scale (<500,000 CY) 

navigational channel dredging and sediment re-use episodes. The beach 

width generally increased by 10-20 m following these projects (e.g., Fig. 

33; peaks in 2005 and 2011). The most recent federal shore protection 

project nourishment event is also apparent in 2021 with the increase in 

beach width on the order of 10 – 20 m. The strongest storm impacts over 

this time interval were caused by Hurricane Dolly in 2008, which left a 

marked erosional signal of ~30 m followed by rapid shoreline recovery. 

Hurricane Hanna in 2020 triggered the notable reduction in beach width 

(~25 m) as shown by the satellite data. Satellite shorelines can thus be 

used to inform adaptive management studies by evaluating if assumptions 

of equilibration rates and recovery intervals from storms within USACE 

planning tools (e.g. Beach-FX) have been tuned appropriately for a given 

site. 
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5.4 Duck, NC 

The Duck 20-year trend data shows frequent large changes in beach width, 

primarily driven by extratropical and tropical storm events. Figure 34 

highlights the abundance survey ground truth data, that generally aligns 

well with the satellite-derived shorelines. Some discrepancies are evident 

during periods when the survey data show the widest shorelines (e.g., Fig. 

34; 2003 and 2011). There is also significant noise in the satellite data and 

examining the six-month moving average line is especially useful for 

tracking bulk shoreline oscillations (Fig. 34; black line).  

Figure 33. Twenty-year shoreline trends at South Padre Island, TX (North). 
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Figure 34. Twenty-year shoreline trends at Duck, NC.  

 

Several storm impact and recovery cycles are clearly shown in satellite-

derived shoreline data. For example, Hurricane Dorian in 2019 caused 

shoreline retreat on the order of 20 m, but one year following the shoreline 

recovered to pre-storm width. The most recent time period is 

predominantly characterized by severe nor’easter impacts where 

shorelines receded 10-15 m from storm impacts. These extratropical 

impacts span long duration stormy periods and often cause more erosion 

than tropical systems, also noted by Cohn et al., (2022). 
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The Town of Duck conducted the first beach nourishment project in 2017. 

To analyze the specific impact of the nourishment, timestacks were created 

in which the differences in the cross-shore position of the shoreline were 

normalized by the behavior of the shoreline outside the region of influence 

of the management action. The timestack (Fig. 35) shows the increase in 

shoreline width following initial construction that started within the 

monitored area in May 2017. Immediately after construction, alongshore 

dispersion of the nourishment to the south occurs beyond the 

nourishment project bounds (also shown in Cohn et al., 2022). Figure 35 

shows erosion within the nourished zone beginning ~11 months after 

project construction (Fig. 35). Erosion was most severe from late fall 

nor’easters (Cohn et al., 2022). The large regional extent of the satellite-

derived shorelines enabled analysis of the influence of the nourishment to 

the adjacent coastal areas. The ability to capture temporally dense 

nourishment evolution, the timing of subaerial equilibration and 

longshore dispersion rates and diffusion beyond project bounds may be 

particularly useful to coastal managers and planners designing 

nourishment projects and developing adaptive management plans.  

 

 

 

Figure 35. Satellite shoreline timestack from Duck, NC where the right y-axis represents the alongshore 

coordinates (m) and colors represent shoreline recession (red) and advance (blue). The differences in cross-

shore position of shorelines through time are normalized by the behavior of a shoreline outside the region of 

influence of the management action. The black arrow indicates the start of the 2017 beach nourishment 

project.  
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5.5 Avalon, NJ 

When compared to the ground truth survey data, the satellite-derived 

shoreline trends show good agreement in Avalon, NJ (Fig. 36). The 

periods of time with the widest and narrowest beach widths align well and 

the satellite imagery is capable of detecting the frequently changing beach 

widths. If only looking at survey data (purple dots) several major shoreline 

oscillations are missed; for example, there was a large gap in ground truth 

data from ~2004 to ~2009 which did not capture the shoreline recovery 

period prior to 2009 (Fig. 36). Another example occurs around 2010, 

where despite more frequent survey data (Fig. 36, fourth and fifth purple 

points), a strong erosional perturbation is missed over a short time 

interval, including observations of when the shoreline was in its most 

erosive state over the course of two decades.  

The decadal time series from Avalon, NJ captures several interesting 

nourishment and storm impact/recovery cycles and highlights the value of 

high 

Figure 36. Twenty-year shoreline trends at Avalon, NJ. 
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temporal frequency monitoring capability for coastal management and 

engineering project applications. The large 4,090,000 CY beach 

nourishment in 2003 is evident in the satellite shoreline positions. By 

9/15/2005, the satellite-derived shorelines show a narrowing of the 

shoreline and return to pre-project beach width. Following this large 

nourishment, equilibration occurred resulting in shoreline recession at a 

rate of ~37.6 m/yr. This high rate of shoreline retreat following 

nourishment is likely attributable to a very active 2004 hurricane season 

which included impacts from four storms: Bonnie (August), Charlie 

(August), Gaston (August) and Ivan (September). Prior to the next major 

nourishment in 2011, the erosion from Hurricane Barry in May 2007 is 

clear (8 m shoreline retreat). After significant beach narrowing around 

2010, two large nourishments followed in 2011 and 2013 totaling 

2,040,583 CY.  

A gap in satellite imagery does not allow for an assessment of the 2011 

nourishment episode, but when examining the two nourishments 

combined, the beach returned to pre-nourishment width after 3.6 years, 

which is roughly equivalent to a shoreline recession rate of 11.9 m/yr. 

While episodic erosion is missed from Hurricane Sandy (2012) due to lack 

of imagery, we suspect Hurricane Irene and Sandy were responsible for 

significant sediment loss during this nourishment cycle (Fig. 36). Figure 

37 displays the ability of satellite-derived shoreline analysis to capture 

hurricane impacts, showing an erosional signal of ~50 m during Hurricane 

Irene. This suggests the potential to use satellite imagery in post-storm 

assessments to quantify impacts to federal project sites and inform 

applications for emergency relief efforts. The last notable nourishment of 

1,636,685 CY was conducted in 2017. Over the next 2.25 years, the beach 

equilibrated to pre-project width, at a recession rate of 23.2 m/yr.  
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Figure 37. Satellite shorelines spanning from 8/24/2011 to 9/16/2011 with early 

dates in blue and post-Irene (8/25/2011 impact) shorelines in red. Note shoreline 

erosion on the order of ~50 m.  

 

5.6 Torrey Pines, CA 

Shorelines at Torrey Pines, CA exhibit high annual and interannual 

variability (generally 10-20 m) which the satellite-derived shorelines are 

capable of capturing (Fig. 38). In addition, this site contains cobbles at 

times which provides an interesting test of the algorithm on an atypical 

mixed-sediment shoreline. The largest trend discrepancies occur around 

2012 when ample usable imagery was lacking.  
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5.7 New Smyrna Beach, FL 

New Smyrna Beach, FL presented the opportunity to leverage other 

coastal imaging work monitoring a nearshore berm placement and to 

compare satellite-derived shorelines to other visually-based digitized 

shorelines from a mini-Argus station (Bruder et al., 2019). This site thus 

represents a unique example when compared to all other locations, which 

used 3D topographic data with vertical datum-based shorelines. As noted 

in the site description, the manual digitization approach to estimating 

shoreline position has a precision on the order of 10 m and needs to be 

accounted for accordingly when comparing to satellite-derived shoreline 

estimates (Onnink, 2020). It should be noted that the nature of the 

shoreline at this site presents challenges in visual delineation because 

there is a wide saturated zone with dark coloration.  Therefore we would 

expect uncertainty with any visual shoreline approach.  

Figure 38. Twenty year shoreline trends from Torrey Pines North. 
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Argus imagery was used to produce timestacks to help assess how the 

nearshore berm impacted the nearshore system and shoreline. As 

mentioned for Duck, these 

timesatacks are normalized 

relative to shorelines 

outside of the area 

influenced by the 

management action. The 

mini-argus timestack is 

strikingly similar compared 

to the satellite-derived 

timestack, emphasizing the 

utility for monitoring 

various engineering 

projects like nearshore 

berms (Fig. 39). Both the 

mini-Argus and satellite 

derived shorelines show 

the increase in offshore 

movement of the shoreline 

in the lee of the nearshore 

berm. Also note the 

additional context provided 

by the satellite data that 

extends well before and 

after the mini-argus 

deployment. While this is 

not intended to suggest 

satellites could replace 

higher resolution systems 

like mini-argus that have 

additional valuable 

functionality (e.g., timex 

for wave breaking), it 

does show the power of 

publicly available satellite 

imagery.  

 

Figure 39. Mini-argus generated shoreline timestack for 

nearshore berm monitoring (top) and satellite-derived 

shoreline timestack (bottom). The black box represents 

the time interval of the mini-argus deployment as 

reflected in the top panel. Sediment was placed from 

1200 m to 1800 m in the alongshore.  
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5.8 Wrightsville Beach, NC 

While it is not included in earlier analysis, this site was investigated in 

Brown (2021) and is a good example of frequent large scale federal beach 

renourishments. Wrightsville Beach received its first nourishment in 1939, 

completed the first Coastal Storm Risk Management project in 1965, and 

was reauthorized in 1986 to continue on a four-year renourishment cycle. 

These cycles allow for the opportunity to quantitatively evaluate 

exponential subaerial nourishment decay rates, which may assist with 

project planning and volume optimization (Fig. 40).  

 

 

 
 
 

 

Figure 40. Wrightsville beach shoreline evolution from renourishment cycles 

since 1984. The colored lines represent exponential decay of the subaerial 

beach after each project.  
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6 Conclusions and Recommendations 

6.1 Conclusions 

The ERDC research team conducted accuracy testing of the CoastSat 

algorithm at a total of 37 sites selected across the nation in coordination 

with District partners. Specific conclusions are as follows: 

 Mean alongshore horizontal offsets of satellite-derived shorelines 

compared to ground truth surveys ranged from 4.2 m to 20.5 m, 

with an overall mean of 11.32 m and slight onshore bias of -3.51 m. 

Sentinel-2 was most accurate with a mean alongshore horizontal 

offset equal to 8.86 m, followed by Landsat-5 (10.52 m) and 

Landsat-8 (10.57 m). 

 Tidal corrections improved accuracies at 82% of our sites. Selection 

of nearby open coast tidal stations is challenging in some locations, 

yet it is critical for improving satellite-derived shoreline accuracies.  

 While there were some discrepancies in CoastSat-generated slopes 

compared to user defined slopes, the impact on shoreline accuracy 

was negligible whereby user-defined slopes improved overall 

accuracy by 0.24 m. This is advantageous as it shows CoastSat slope 

function can be used when no field or ground truth derived slope 

information is available. 

 Implementing wave runup corrections slightly improved accuracy 

at 3 out of 5 test sites where robust wave data was available. 

Investigation is ongoing to test other runup/setup correction 

approaches and determine site specific dependencies. 

 20-year satellite-derived shoreline trends generally agree well with 

ground truth shoreline trends. With 200 days of data, the mean 

difference in the trend was -3.10 m/yr, and with a subset 

encompassing 650 days of data, the mean difference in the trend 

was -0.04 m/yr. 

 ERDC added several improvements outside of the typical CoastSat 

workflow including more efficient image sorting, tidally shifted 
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shoreline shapefiles, runup corrections and various analysis 

products. 

 Satellite-derived shorelines were able to quantify a variety of 

impacts from management actions including subaerial beach 

nourishment equilibration, diffusion and decay, shoreline response 

to small nearshore berm placements, and background/natural 

versus engineered shoreline variability.  In addition, CoastSat 

captured many storm impact and recovery cycles. 

 This satellite-derived shoreline approach represents a free and 

powerful data source for Districts and coastal practitioners that can 

provide both decadal and short-term shoreline insights at broad 

spatial scales. These satellite data can potentially reduce the costs 

associated with monitoring coastal management actions, improve 

project design and inform adaptive management and feasibility 

studies. The development of a user-friendly desktop tool to make 

this technology more accessible is ongoing. 

6.2 Recommendations 

The research team suggest a primary takeaway from this effort is that 
CoastSat shoreline accuracy is strongly linked to satellite pixel resolution. 
Despite the capability to operate at a sub-pixel scale, we hypothesize that 
consistent accuracy < 5 m would be difficult to achieve without improved 
satellite resolution. Only one test site (South Padre 8) was <5 m accuracy.  
 
Other work by Doherty et al. (2022) focused on PlanetScope imagery with 
a resolution of 3.0 m at Duck and other sites and found RMSEs ranging 
from 3.5 m to 5.1 m. Doherty et al. (2022) state: “The increase in accuracy 
obtained by PlanetScope imagery is subsequently sufficient to capture 
smaller-scale variability at the sub-annual or seasonal timescales, 
particularly considering the generally smaller magnitude of shoreline 
variability at Duck relative to Narrabeen. This was identified as a key 
limitation of applying CoastSat and Landsat/Sentinel-2 at less dynamic 
sites (Vos et al., 2019a).” 
 
There are other higher resolution imagery candidates to consider as well 
including Maxar Worldview-3 (pixel resolution = 0.31 m; Turner et al., 
2021) and Dove Cubesats that are capable of multiple passes per day 
which could potentially help to reduce shoreline noise. These are currently 
not compatible within the CoastSat workflow.  
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