

Long-term Morphologic Modeling at Coastal Inlets

Alex Sánchez

Richard Styles, Mitchell Brown, Tanya Beck, and Honghai Li

Coastal and Hydraulics Laboratory US Army Corps of Engineers

US Army Corps of Engineers

Introduction

- Motivation:
 - Prediction of morphodynamic processes at coastal inlets is challenging but crucial for coastal sediment management, navigation, channel maintenance, and breach erosion protection
- Issue:
 - Difficult to conduct meaningful long-term validation of morphodynamic models using real data
- Approach:
 - Simulate idealized inlets representing 9 US inlets and compare inlet evolution, characteristics, and features with the actual inlets empirical formulas (soft validation)

Introduction: Coastal Modeling System

Hydrodynamics:

ch & Daval

- 2DH shallow-water equations
- Fully implicit, finite-volume method
- Non-uniform or Telescoping Cartesian grids
- Sediment Transport
 - Inline
 - Total-load non-equilibrium sediment transport
 - Erosion/deposition calculated using an adaptation approach
 - Several options for transport capacity formula
- Waves
 - Spectral wave-action balance equation
 - Implicit finite-difference method

Empirical Relations

Cross-sectional area

 O'brien (1931, 1969), Kraus (1998), Jarrrett (1976), van der Kreeke (1992), Powell et al. (2006), etc.

 $A = CP^n$

- Ebb tidal shoal volume • Walton and Adams (1976) $V_{ebb} = aP^b$ • Hicks and Hume (1996) $V_{ebh} = 1.37 \times 10^{-3} P^{1.32} (\sin \theta)^{1.33}$
- $A \rightarrow \text{Cross-sectional area}[m^2]$
- $P \rightarrow \text{Tidal prism } [m^3]$
- $C \rightarrow 8.83 \times 10^{-6} 1.88 \times 10^{-3} \ [m^{-1}]$
- $n \to 0.81 1.10$ [-]

 $a \rightarrow 5.3 \times 10^{-3} - 8.4 \times 10^{-3}$ $b \rightarrow 1.23$

Methods: Idealized Inlets

- Initial Morphology
 - Equilibrium offshore profile based on measured bathymetry or median grain size
 - Flat rectangular bay with dimensions based on actual inlet. Bay width and length adjusted to match actual bay area
 - Flat rectangular inlet with width and area matching actual inlet
- Water levels
 - Tidal constituents
- Waves
 - Representative year based on mean sediment transport rate estimated from the CERC formula and nearby buoy data

Methods: Model Setup

Flow

- ▶ Manning's n = 0.025 s/m^{1/3}
- Coriolis
- Sediment transport
 - Single representative grain size
 - Morphologic acceleration factor = 10
- Time stepping
 - Flow and sediment: 15 min
 - Second-order scheme
 - ► Waves: 1 hr
- Grids
 - Same for flow, sediment, and waves
 - Resolution
 - At least 10 cells across inlet

Results: Johns Pass, FL

Flood dominant

Actual ebb shoal volume
2.1 to 2.3 M m³

Grays Harbor, WA

Equilibrium crosssectional area of idealized inlet larger than initial condition

Inlet still evolving after 100 years

BUILDING STRONG®

earch & Develor

Discussion and Conclusions

- Rate of bed change within the first 10-20 years is rapid and then slows
- None of the simulated inlets reached a full dynamic equilibrium after 100 years suggesting that either:
 - 1. The adaptation time of the simulated inlets is longer than 100 years
 - 2. The inlets may never reach equilibrium due to missing or incorrect processes necessary for a stable equilibrium
- Significantly different results were obtained for different sediment transport capacity formula

Discussion and Conclusions

- Model computational times were reasonable
 - ▶ 100 years in about 7-10 days on a PC
- Model stability was very reasonable
- Cross-sectional areas were generally overpredicted
- Ebb and flood shoal morphologies and evolution were reasonable
- Comparison to the Escoffier curves were reasonable

Future Work

23.0 15.0

70

- Multiple grain sizes
 - Reduce channel erosion
 - Help reach dynamic equilibrium faster
- Dynamic roughness
 - Function of the bed gradation and bedforms
- Bank erosion feature
- Influence of jetties, asymmetric bays, and dredging
- Inlet infilling and closure?

Thank you Questions?

search & Develop