

# Modeling FRF Nearshore Processes and Morphology

CIRP Tech Discussion 13 Apr 2021

#### **Project Team:**

Brad Johnson
Nick Cohn
Spicer Bak
Kate Brodie
Pat Dickhudt

### Nearshore Transport Models

Less Complexity/ Computational Expense

More Complexity/ Computational Expense

Scalar
Parameter:
e.g. Shields,
Mobility,
Dean.

Data
Driven: e.g.
historical
shoreline
projections
forced
empirical
models

Phaseaveraged steady models: SBEACH, Unibest, CSHORE.C MS/C2SHO RE

Phaseaveraged, low-freq resolving steady model: XBEACH

Phaseresolving models: FUNWAVE COULWAVE RANS, etc

### **CSHORE Hydrodynamics**

- Assume local longshore uniformity
- Requires wave conditions at sea boundary
- Solve eqns for wave energy, momentum, mass for timeaveraged hydrodynamics
- Predict cross-shore variation of

$$\eta$$
 = mean free surface elevation (wave setup)

$$\sigma_n = H_{mo}/4$$
 = free surface standard deviation

$$\theta$$
 = wave angle

$$\overline{U}$$
 = depth-averaged cross-shore current (undertow)

$$\overline{V}$$
 = longshore current



#### **CMS-C2SHORE**

- C2SHORE sediment transport option
- Dependencies on waves, currents are satisfied with CMS wave, flow module solutions
- The computed concentration field and sediment transport has been verified with the theoretical CSHORE basis





### CSHORE/C2SHORE

- In addition to obvious differences (1D vs 2DH) some important differences in hydro, computation of transport, and morphology change
- CSHORE Hydro
- Time-steady
- Tightly coupled
- Swash soln is integral

- CMS Hydro
- Time-dependent
- Modular waves/circulation
- Swash soln is a domain extension and simpler

### CSHORE/C2SHORE

#### CSHORE Sed Conc

$$V_s = \frac{e_B D_B + e_f D_f}{\rho g(s-1)w_f} P_s$$

#### C2SHORE Sed Conc

$$C_{t*} = \frac{\rho_s V_s}{h}$$

$$\left| \frac{\partial}{\partial t} \left\{ \frac{hC_t}{\beta} \right\} + \frac{\partial}{\partial x_i} U_i h C_t = \frac{\partial}{\partial x_i} \left\{ \nu_s h \frac{\partial C_t}{\partial x_i} \right\} + \alpha_t w_f (C_{t*} - C_t)$$

### CSHORE/C2SHORE

- CSHORE Transport
- and bed-change

$$q_x = aU_{RC}V_s + q_{bx}$$

$$(1-n)\frac{\partial z_b}{\partial t} = -\frac{\partial q_x}{\partial x}$$

C2SHORE bed change

$$\rho_s(1-n)\frac{\partial z_b}{\partial t} = \alpha_t w_f(C_{t*} - C_t)$$

- Appropriate for sus load only with advection by currents only, but
- Bedload
- Wave-related transport

$$\rho_s(1-n)\frac{\partial z_b}{\partial t} = \alpha_t w_f(C_{t*} - C_t) - \frac{\partial \tilde{Q}_{x_i}}{\partial x_i}$$

#### **Laboratory Model Test**











#### **Depth-Dependent Suspension**

Growing evidence that suspension slightly over predicted in outer surf/ under predicted in inner surf

$$V_s = \int_0^h c \, dz = \frac{e_f D_f + e_B D_B}{\rho g(s-1)w_f} P_s \sqrt{1 + S_x^2 + S_y^2}$$

A new corrective factor is implemented

$$D'(z) \sim e^{kz}$$

$$D'(z) \sim e^{kz}$$
 where  $k = \frac{1}{l} = \frac{1}{\beta H_{rms}}$ 

Results in

$$D_{B_b} = \frac{khD_B}{e^{kh} - 1}$$

#### **Laboratory Model Test**





### FRF X-Shore Array

Study Focus Area: Make use of surveys, and cross-shore array



### FRF Transport

$$(1-n)\frac{\partial z_b}{\partial t} = -\frac{\partial q_x}{\partial x} - \frac{\partial q_y}{\partial y}$$

$$\int_{dry}^{deep} (1-n) \frac{\partial z_b}{\partial t} dx = -\frac{\partial Q_y}{\partial y}$$



$$Q_y = \int_{dry}^{deep} q_y dx$$



Requires a boundary condition and then estimates of the distribution of Q\_y results in uniquely determined average transport fields.

### FRF Transport



### Nor'easter storm and hurricane Joaquin

- Sustained energetic conditions for 15 days
- Peak Hs of 4 m
- Storm surge < 1 m























#### Conclusions

- CMS-C2SHORE is settling to stable version
- High-quality lab data provides opportunity to fix free params
- No guarantee of generality
- FRF data provide another comparison
- With some assumptions, a field of transport can be calculated
- 1D model shows some skill in dune erosion
- CMS/C2SHORE predicts fabulously complex transport patterns (current advection and wave-related part important)
- The divergence(wave-transport)+pickup+fallout results in accurate bed-level changes
- Cross-shore model has no skill in bathy changes
- Working with FRF on data needs