

NEARSHORE PROCESSES/C2SHORE

Brad Johnson Liz Holzenthal

District PDT: Kelly Legault (SAJ) Gabriel Todaro (SAJ)

19 Apr 2024

COASTAL INLETS RESEARCH PROGRAM FY23 IN PROGRESS REVIEW

ERD

CIRP

 $\bar{\eta}(x)$

UNCLASSIFIED

R

PROBLEM STATEMENT

- Nearshore waves, hydrodynamics, and sediment transport remain poorly understood. No comprehensive and general predictive technology exists for rational design and planning of coastal projects of relevance for USACE. Challenges include
- Navigation sediment transport from open coasts to coastal inlets and channels
- BUDM fate and evolution of nearshore nourishments
- FRM design of flood protection dunes
- EWN impact of NNBF
- 2024 BCER Initiative
- #1906: Quantification of Shoreline Response to Nearshore Berms
- #2101/2103 Predictive Capability in Coastal Sediment Transport
- #2202 CoPADD: Transition to New Coastal 3D Circulation Models for Water Quality and Sediment

FY23 was Year 3 of 3

Year over year advancements to date: 1 TD, 1 TR (in review), 2 conference presentations (ASBPA, ICCE)

US Army Corps of Engineers
Engineer Research and Development Center
Coastal and Hydraulics Laboratory

UNCLASSIFIED

CAPABILITY AND STRATEGIC IMPACT

- Improved nearshore sediment transport for prediction of beneficial use, channel infilling, etc.
- New effort to properly include NNBF in both wave and circulation models.
- Consistent formulation permits prediction of benefit of dissipation elements (SAV, oyster, mangrove, etc.)

 New capability to model runup provides risk assessment, dune evolution; informs aeolian model coupling

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

RUNUP

R

 h_0

 V_o

max

 H_0

 $\overline{\eta}(x)$

- Separate nearshore and swash domain, solve separately
 - Distinctly different WSL slopes indicate differing physics
 - Demarcation at point of max setup (not constant depth*)
- Swash solution governed by:
 - Simplistic momentum flux balance, closed with empirical parameter A_0 (= R/2h₀)
 - Bernoulli's velocity "head", Newtonian ballistics (R = $V_0^2/2g$)
 - Shallow water theory $(V_0^2 \sim gh_0 \sim gH_0)$
- Theoretical A₀ = 4, but can be adjusted to account for assumptions

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

RUNUP (CONT)

Е

- Compare new CMS formulation for $R_{2\%}$ against 4 other models (3 numerical, 1 empirical)
- Validation set includes 533 unique • observations of surf zone morphology, offshore wave and WL conditions, and runup statistics

	Runtime	RMSE (m)
Stockdon, et al. (2006)	0.18 s	1.01
CSHORE	25.0 s	0.55
CMS – new R _{2%} formula	4.1 min	0.38
XBeach-Surfbeat	35.5 hr	0.53
XBeach-Nonhydrostatic	124.4 hr	0.45

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

RUNUP – KEY FINDINGS

- Shoreface geometry/surf similarity parameter alone insufficient to capture observed tidal-scale variability in $\rm R_{2\%}$
- Numerical models are needed to predict dynamic wave transformation over bar to the edge of the swash zone Correlation (R²) between R_{2%} and: Ib* = 0.39, H(x = x_b)* = 0.53, h(x = x_b) = 0.81, H(x = 504m) = 0.90

- New (rapid) CMS R_{2%} formulation is a valuable, critical step forward to predicting surf- and swash zone morphodynamics
- CMS wave heights comparable to or better than XBNH and XBSB in nearshore, but
- In swash zone, CMS wave heights worse than all numerical models tested; indicates A₀ is significantly tuning in addition to simply "closing" solution

		CSHORE	CMS	XBNH	XBSB
x = 403 m	RMSE [m]	0.17	0.13	0.31	0.43
	B [m]	-0.08	0.09	0.21	0.33
x = 453 m	RMSE [m]	0.15	0.24	0.3	0.54
	B [m]	0.13	0.22	0.23	0.45
x = 463 m	RMSE [m]	0.13	0.25	0.37	0.58
	B [m]	0.06	0.19	0.28	0.48
x = 494 m	RMSE [m]	0.2	0.17	0.23	0.25
	B [m]	-0.16	-0.09	0.12	0.13
x = 504 m	RMSE [m]	0.29	0.33	0.21	0.15
	B [m]	-0.26	-0.29	0.07	-0.07

RUNUP – 2DH MILESTONE

Swash-soln included in

1D longshore-uniform computations

- Demonstrates proper slope-dependence
- <u>Doesn't</u> include realistic momentum veering where velocities SHOULD veer away from crest

$$\frac{\partial h}{\partial x} = \frac{-\left\{\frac{\partial z_b}{\partial x} + c_f\right\}}{2A_0} - \frac{h}{2}\frac{\partial \alpha}{\partial y}\frac{\Delta y}{\Delta x}$$

CMS-2D swash

- Now include veering and momentum focus/defocus
- Runup reduced at ridges
- Formulation now requires predictor-corrector scheme
- Localized nature of CMS presents a challenge
- Data is required to verify simple formulation, but processing is challenging

US Army Corps of Engineers
Engineer Research and Development Center
Coastal and Hydraulics Laboratory

HAZARD REDUCTION by NNBF

1.0 m

> Recent emphasis on EWN and NNBF

- Fringing vegetation, such as mangrove stands provide a degree of coastal protection
 - ...The global annual avoided damages due to the presence of mangroves have been estimated at USD\$65 billion....

But these studies are based on an incomplete view of the hazard and impact of vegetation

- Coastal hazard derives from waves and surge, and frictional dissipation impacts both
- a consistent modeling system includes impact of vegetation in both energy and momentum balances

CONVENTIONAL ENERGY BALANCE

Energy loss in waves with depth- and phase-averaged energy balance

$$\frac{\partial E_f}{\partial x} = -\overline{\tau u} - \overline{\int_{zb}^{\eta} f u dz}$$

f = the incremental fluid force on the vegetation per unit area.

- New OSU flume data with emphasis on investigating wave decay in artificial mangrove
- Free surface, pressure, velocities
- All of the vegetation unknowns are tailored to match the energy decay, making full use of the measured data

$$f = \rho \frac{C_D}{2} b_v N |u| u = \beta |u| u$$

A Consistent Wave/Circulation Application

 While waves loose energy (thus providing coastal protection) the vegetation force results in larger free-surface slopes. Note that we have something useful here:

$$D_v = \overline{\tau_v u} = \beta \overline{h|u|^3} \to \tau_v = \beta \overline{h|u|u}$$

Now we are well-positioned to examine the consistent momentum balance

A Consistent Wave/Circulation Application (cont)

What contributes to non-zero \mathbf{F} ?

- Non-zero current $\overline{u} \neq 0$
- Departure from symmetric u (skew) $\mathbf{F} \propto Sk$
- Impact of emergent vegetation: $f_{crest} > f_{trough}, \mathbf{F} = \overline{f} > 0$

	Setup $\overline{\eta}$
Current \overline{u} \uparrow	\downarrow
Skewness \uparrow	\downarrow
Free-Surface Variation \uparrow	\downarrow

This demonstration uses measured data and does not reflect the real fight! The real battle is formulating the methods to predict currents, skewness, free-surface effect. Inclusion in CMS is then relatively simple.

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

SUMMARY

FY23 Major Advancements in Capability

- Improved CMS-flow stability with corrected boundary pressure formulation
- Completed runup extension
- Initial testing of 2DH runup
- Initiated comprehensive effort to include impact of friction elements into CMS

FY23 Major Products & Collaborations

- New code version
- TR on runup (in review)
- 2-3 TD's on swash, setup in high-friction environments

FY24 Products & Advancements

- Two Related New Starts for SoN-N-1970:
 - Explore swash morphology change
 - Develop multi-scale modeling approach as a means to provide process-based closures in phaseaveraged models could include

