UNCLASSIFIED

PRACTICAL WAVE RESPONSE GUIDANCE
OVER EMERGENT AND SUBMERGED
COASTAL STRUCTURES USING FUNWAVETVD

Marissa J. Torres (PI)
Gabriela Salgado-Dominguez
(Co-PI)
Fabian Garcia Moreno
Michael-Angelo Y. Lam
Abigail Stehno
Levi Cass (ORISE)
Matt Malei

INLET ENGINEERING TOOLS

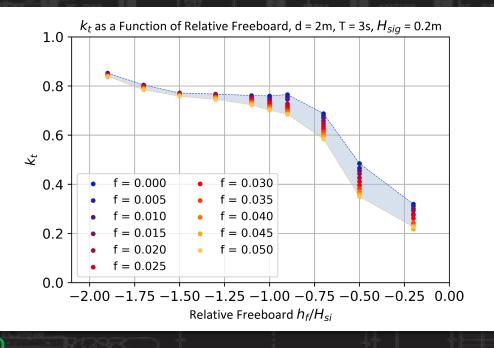
District PDT Members:

Jessica Podoski (POH)
Rod Moritz (NWP)
Rachel Malburg (LRE)
Matt Wesley (SPL)
Patrick Kerr (SWG)
Gabriel Todaro (SAJ)
Drew Condon (SAJ)

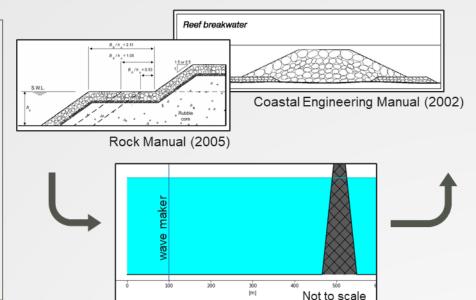
19 APR 2024

COASTAL INLETS RESEARCH PROGRAM

FY23 IN PROGRESS REVIEW



US Army Corps of Engineers



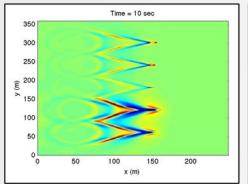
PROBLEM STATEMENT

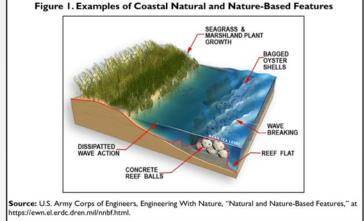
- Coastal structures (e.g., breakwaters and jetties) are vital for navigation, shore protection, and beach stabilization
- There is rarely enough time, money, and resources to execute screening of structure design alternatives or robust assessment of wave-structure interactions
- Connect coastal engineering applications to the phase-resolving, nearshore numerical wave modeling environment & make numerical wave modeling more accessible to practitioners

Statements of Need:

- SoN-1664 (2022) "Enhanced user guidance and support tools for FUNWAVE-TVD, a Boussinesq-type numerical wave model"
- SoN-1370 (2020) "Testing and evaluation of USACE coastal numerical models"
- SoN-1278 (2020) "Boussinesq modeling of wave transformation and interaction with permeable and submerged structures"

FY23 was Year 2 of 3




CAPABILITY AND STRATEGIC IMPACT

- Improved understanding of how to represent coastal structure design properties in FUNWAVE-TVD for increased reliability and accuracy in environmental assessments of coastal structures.
- Enhanced accessibility and usability of FUNWAVE-TVD for users of all levels to save time, money, and resources on SMART planning initiatives
 - Case studies, NNBF, Inland Nav
- Help the Nation stay resilient to coastal storms and floods by providing tools and resources to coastal practitioners.

PROJECT OBJECTIVES

Wave Response	Dimension	Wave Climate	Structure Properties
Overtopping	1D	Regular Irregular	Emergent Smooth / Rough Impermeable
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Emergent Smooth / Rough Impermeable
Runup	1D	Regular Irregular	Emergent Smooth / Rough Impermeable
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Emergent Smooth / Rough Impermeable
Transmission (over structure)	1D	Regular Irregular	Submerged Smooth / Rough Impermeable / permeable
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Submerged Smooth / Rough Impermeable / permeable
Reflection	1D	Regular Irregular	Emergent Smooth / Rough Impermeable
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Submerged Smooth / Rough Impermeable / permeable

215 (h, T) reg. 160 (h, T) irreg. 5 wave heights 5 wave dir. 5 struct. slopes 5-9 struct. heights 3-5 crest widths 5-10 fric. values 5-9 sponge widths 5-10 sponge strengths

10M+ simulations per wave response!

US Army Corps of Engineers •

Engineer Research and Development Center • Coastal and Hydraulics Laboratory

PROJECT OBJECTIVES (CONT)

Wave Response	Dimension	Wave Climate	Structure Properties	% Complete	Exp. Completion
Runup & Overtopping Reflection Transmission (over structure)	1D	Regular Irregular	Emergent Smooth / Rough Impermeable	20%	30 SEP 2023 (FY24) 31 DEC 2024 (FY25)
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Emergent Smooth / Rough Impermeable	0%	TBD
	1D	Regular Irregular	Submerged Smooth / Rough Impermeable / permeable	30%	30 SEP 2023 (FY23) 31 DEC 2024 (FY25)
	2D	Regular (normal, oblique) Irregular (normal, oblique)	Submerged Smooth / Rough Impermeable / permeable	0%	TBD

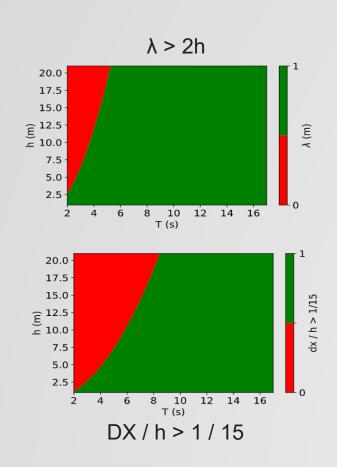
- Collapse total number of simulations and group wave responses where possible
 - Each simulation set up for wave reflection analysis
 - Identify where to reduce test suite for meaningful results requiring less resources
 - Isolate runup-only and overtopping events

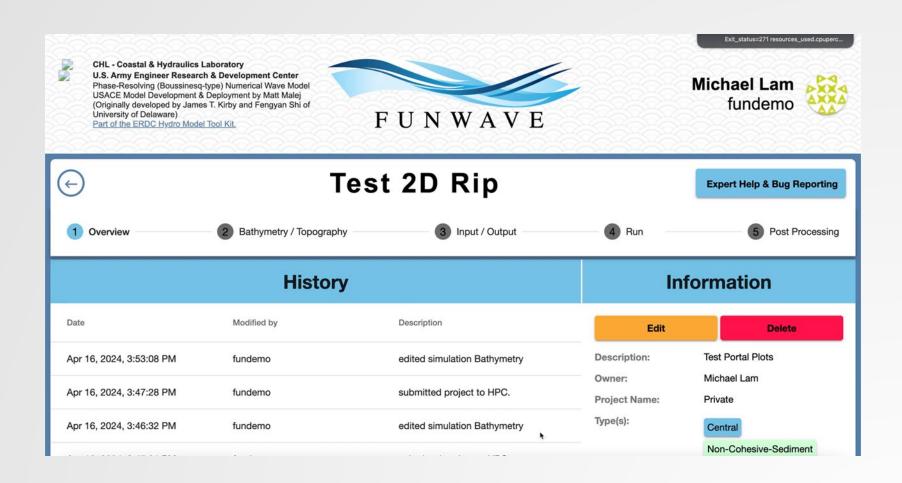
YEAR-OVER-YEAR

Year 1

- Completed pre-processing guidance on range of validity and spatial resolution checks
- Identified test cases to verify post-processing script development
- Enhanced usability and accessibility of DoD HPC Portal application

Year 2

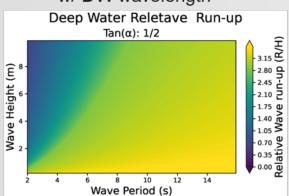

- Transitioned pre-processing guidance on range of validity and spatial resolution checks to DoD HPC Portal application
- Completed initial validation of post-processing scripts with test cases
- Developed preliminary guidance on implementing structures in FUNWAVE



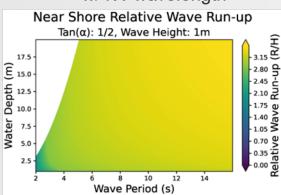
DOD HPC PORTAL APPLICATION

*Partially supported by HH&C SET program

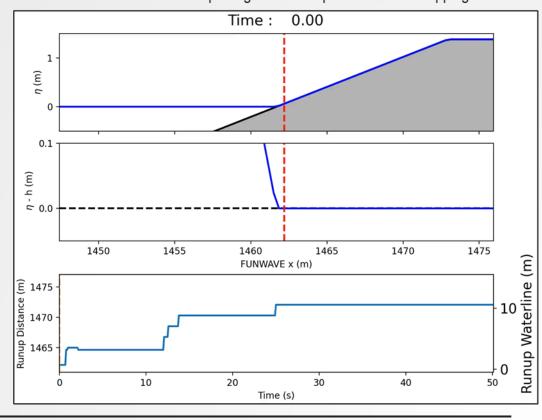
WAVE RUNUP


- Comparing results with EurOtop
 - Reframed relative runup (R/H) in terms of depth-limited wavelength
 - Goal: recreate heatmap from FUNWAVE results and compare
 - Initial results require further analysis

$$\frac{R_{u_2\%}}{H_{m0}} = 1.65 \gamma_b \gamma_f \gamma_\beta \xi_{m-1,0}$$


$$\xi = \frac{\tan \alpha}{\sqrt{H/L}}$$

	Wavelength (L)
(DW) $h/_L < 1/_2$	$\frac{gT^2}{2\pi}$
$(W)^{-1}/_{20} < h/_L < 1/_2$	$\frac{gT^2}{2\pi}\tanh\left(\frac{2\pi h}{L}\right)$


EurOtop (2018) w/ DW wavelength

w/ IW wavelength

Example of tracking the water line on slope in post-processing; not capturing initial runup line until overtopping occurs

US Army Corps of Engineers •

Engineer Research and Development Center • Coastal and Hydraulics Laboratory

WAVE OVERTOPPING

- Self-validating test case for wave overtopping check computed volume with bucket volume change
- Careful consideration when computing area over crest versus volume flux
- Initial results show FUNWAVE estimates fall within empirical equation confidence limit

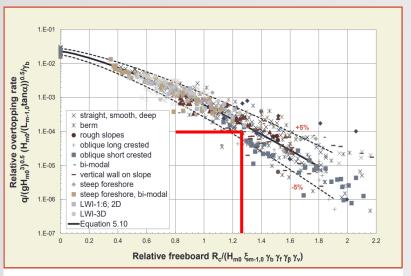
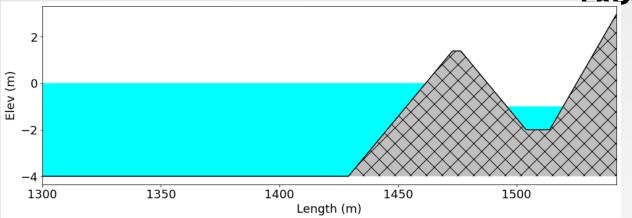
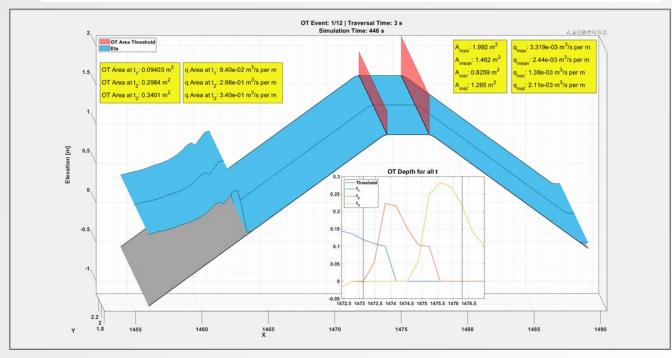
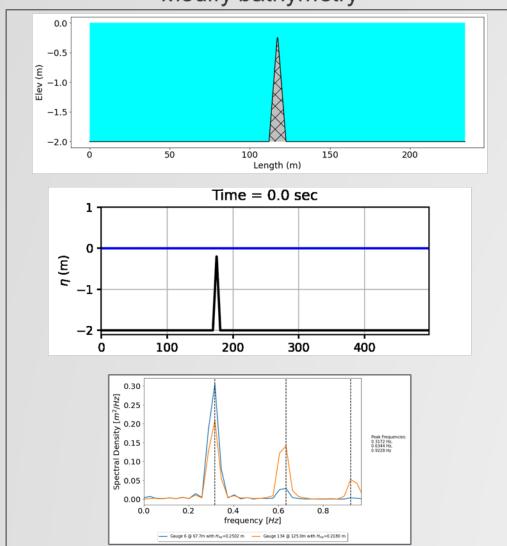
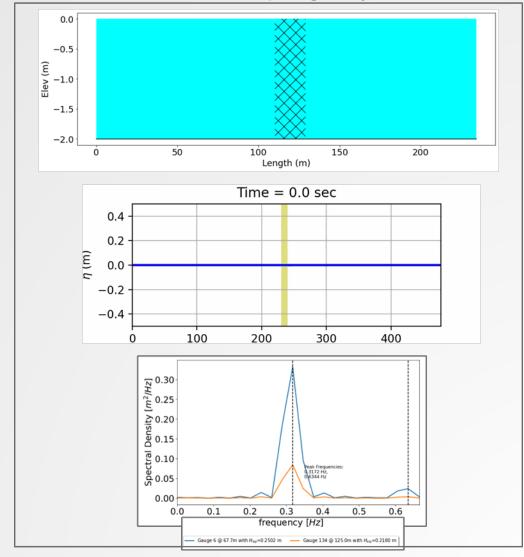




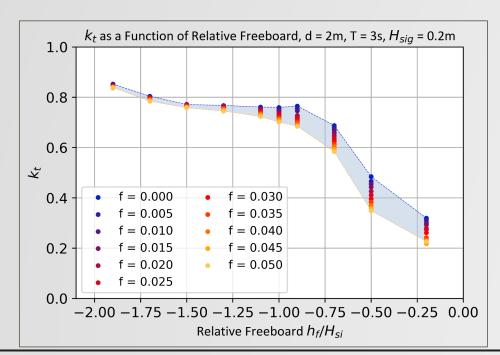
Figure 5.12: Wave overtopping data for breaking waves and overtopping Equation 5.10 with 5% under and upper exceedance limits (= 90%-confidence band)

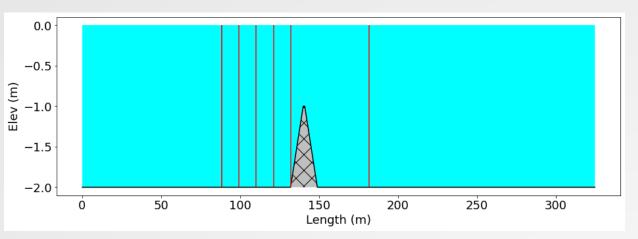


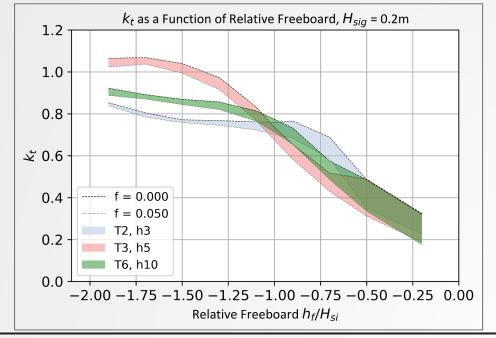

WAVE TRANSMISSION

Modify bathymetry

Internal sponge layer

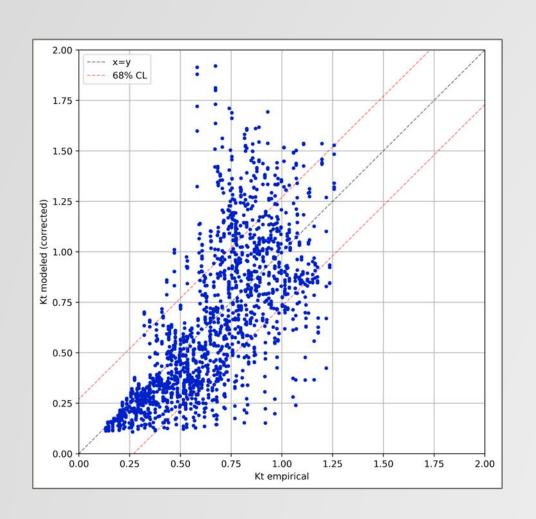


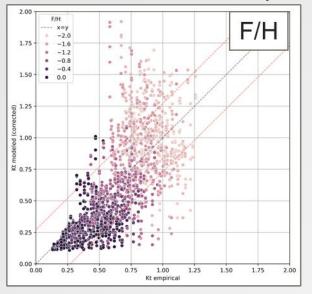

WAVE TRANSMISSION (CONT)

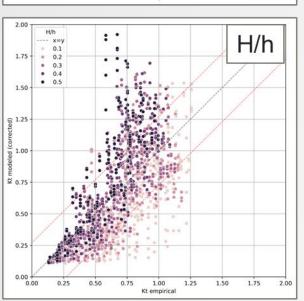


Subset wave conditions

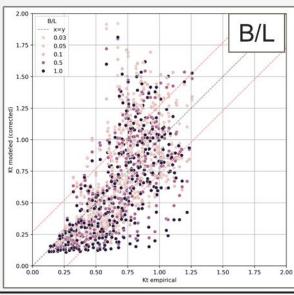
- T = 3, 5, 6 s
- h = 2, 4, 10 m
- m = 1:2, 1:3, 1:5, 1:8
- H/h = 0.1, 0.2, 0.3, 0.4, 0.5
- F/H = -2.0, -1.8, -1.5, -1.0, -0.5, -0.2, 0.0
- B/L = 0.03, 0.05, 0.1, 0.5, 1.0








WAVE TRANSMISSION (CONT.)



FUNWAVE WORKSHOPS

Northeastern University July 2023

Detroit District August 2023

Buffalo District November 2023

*Primarily supported by HH&C SET Program

SUMMARY

FY23 Major Advancements in Capability

- Transition pre-processing tools to DoD HPC Portal application
- Wave response post-processing scripts available on GitHub in FUNWAVE Python Toolbox
- Simulation checklist on FUNWAVE Wiki & other updates
- Troubleshooting guidance and recommendations

FY23 Major Products & Collaborations

- ERDC TN on troubleshooting guidance (exp. APR 24)
- ERDC TR on FUNWAVE Testbed (exp. APR 24)
- CIRP TD on wave transmission (12 SEP 23)
- ASBPA conference presentation (OCT 23)
- 3 PDT presentations/discussions
- ORISE student transitioned to SSEP
- Storyboard
- FUNWAVE Wiki updates
- New District partners: Buffalo, New England

FY25 Products & Advancements

- Transition post-processing tools and interactive visualization to DoD HPC Portal application
- ERDC TR on wave transmission, overtopping, and runup results
- Potential JP on effect of nonlinearities on wave energy propagation in FUNWAVE
- FUNWAVE Workshops (JUL 24) and tech discussions (TBD)
- ASBPA, AGU Oceans, or other conference presentation

