Coastal Inlets Research Program

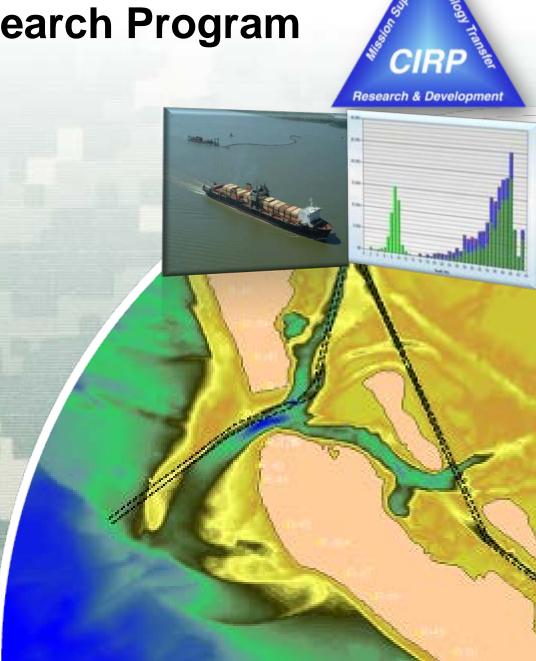
Julie Dean Rosati

Program Manager

Jim Walker

HQ Navigation Business Line Manager

Jeff Lillycrop


Technical Director

Eddie Wiggins

Associate TD

US Army Corps of Engineers
BUILDING STRONG®


Overview of Presentation

- Coastal Inlets Research Program
 - Mission
 Technology and Products
- FY12 Activities Models in Surface-water Modeling System
 - Coastal Modeling System
 CMS-Wave, CMS-Flow SoN 2008-N-6: Long-term Morph Chg
 - CMS-MixSed Mixed cohesive/non-cohesive sediment transport as forced by waves and currents
 - PTM for CMS Upgrade to operate with telescoping grid
 - GenCade

SoN 2008-N-6: Long-term Morphology Chg

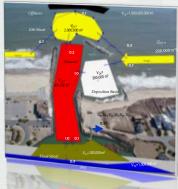
Overview of Presentation (cont.)

WebTools

CPT, CSMART

SoN 2009-N-8: Justification for Dredging

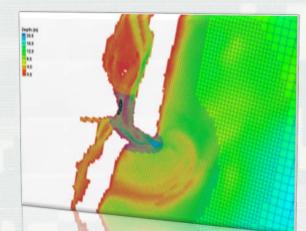
Berm Planning Calculator


SoNs 2011-N-15b/19b: Nearshore Berms

WaveNet

SoN 2011-N-10: Dynamic WebLink Environ

- FY13 Proposed Activities
 - Sea Level Rise Impacts on Coastal Navigation Projects SoN 2012-N-11
 - Automated Feature Extraction for Sediment Budgets SoN 2012-N-15
 - Validation Measurements SoN 2009-N-5



CIRP Mission

- Conduct R&D to reduce O&M costs at coastal navigation projects
 - Include inlets, entrances, ports, marinas, harbors, navigation structures, and adjacent beaches as influenced by metocean forcings.
- Develop tools to support O&M practice
 - Provide Districts tools for in-house PCs.
 - Tools to evaluate inlets, channels, structures, adjacent beaches, dredging and placement within a regional management practice.

- Transfer technology and products
 - Guidance documents, Workshops, models and tools, Web site, Wiki-pages, PC software, Web portals, Mobile device apps.

Coastal Inlets Research Program Mission Areas

Tools and Models:

CMS, CPT, CSMART,
GenCade, Inlet Res Model,
RMAP, Shoaling Toolbox,
CMS pre/post processing tools
WaveNet, Nearshore
Berm Calculator

Tech Transfer:

Workshops, Website, Wiki, Mobile apps, Video clips, Webinars, TRs, TNs, JPs

CIRP

Research & Development

R&D: Berm migration, Mixed-grain sediment transport, Long-term morphology change, Sand sharing relationships for inlets

CIRP Work Units

Program Management and Technology Transfer

Julie Rosati, Mitch Brown

Coastal
Modeling
System
(CMS)

Alex Sanchez Honghai Li

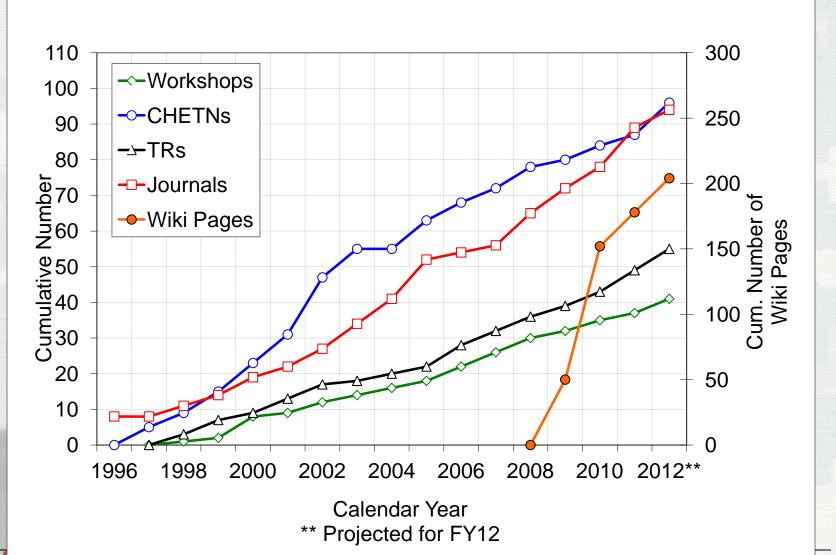
Waves at Navigation Structures

Lihwa Lin Zeki Demirbilek

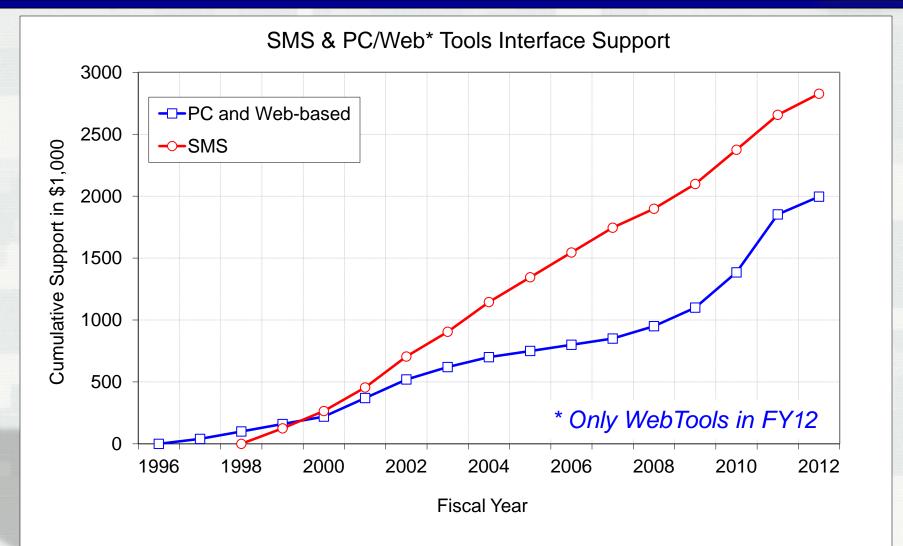
Geomorphic Evolution

Tanya Beck

Inlet
Engineering
Toolbox


Ashley Frey Julie Rosati Coastal
Navigation
Portfolio
Management
Ned Mitchell

CIRP Publications and Workshops



Investment Chart

Workshops, Nov98-Aug12

E & W Coasts, No	pars of An	nual Workshops —	
#1 – FSBPA, Feb 2004 J	cais of All	i luany workshops	
#2 – FSBPA, Feb 2001		ADCIRC, STWAVE, & ADCIRC/STWAVE linkages	
#3 – FSBPA, Jan 2002	Cumulati	vo Morkshops	
Jul 2002 4 U	Culliulati	ve Workshops	
# 4 – FSBPA, Feb 2003		Hydro Steering Module and sediment transport/morphology change)
May 2003	Markchan	CS03 Modeling Tidal Inlets	
#5 – FSBPA, Feb 2004	AAOLKZIIOP	S (2 w/DOTS) and	
Aug 2004		Calculating codiment transport/morphology change	
#6 – FSBPA, Feb 2005	3 Wehina	ars in FY112 hology change, channe infilling	5
Aug 2005	Baltimore, MD	Inlet Modeling System technology transfer workshop	

#7 - FSBPA. Jan/Feb 2006

Sarasota, FL

Modeling of waves circulation sediment transpland mornh change

I: Beginning CMS and SMS (Jun 11-15, 1-3 pm CDT)

II: Advanced CMS (Jun 18-22, 1-3 pm CDT)

III: GenCade (Sep 11-13, 1-3 pm CDT)

Register on CIRP Website

-	#12 FSBPA, Feb 2011	Jacksonville, FL	Modeling & Decision-Support for Coastal Inlets	
	Aug 2011	San Diego, CA	CMS&GenCade for Regional Sediment Management	
	#13 NAP, Mar 2012	Philadelphia, PA	Technology Transfer Workshop/Webinar	
C	Jun (2), Sep 2012	Webinars	CMS and GenCade Webinars	

Feedback from NAP Workshop

CIRP

Numerical Model Tools and Capabilities

U.S. Army Engineer Research and Development Center

Coastal and Hydraulics Laboratory

Coastal Inlets Research Program

Coming Soon: Quick-Reference Summary of CIRP's WebTools

COASTAL INIETS RESEARCH PROGRAM BUILDING STRUNG.

Model	What does it do?	What are typical time scales and platforms?	Where has it been validated?	What are advantages?	What are limitations?	Where do I find info?	Who is the main POC?
duss- D/2D Vave model or avigation, ent/harbor, load & risk assisment, lectson- apport	High-fidelity, advanced, mest accurate model for short and long waives 1:10 km regions Waive-tracture-ship interactions, ship unite Surf & swesh cone waives (rip currents, name/overtopping, infine gravity & tsunamic)	20 wave conditions run with rectangular golds in projects projects Can be used with one grid or grids for coch project alternative. Run on PC, Linux, and MPK's Issuercomputers) Hours to a week.	 15+ sites including coastal wiete, hardons, parts, flood control structures, and reefs 	Physics & process based, no empiricism Only UBO model for nonlinear shallow-water waves Ideal for ports/ harbors/marines, & design/rehab of infrostructure	Need expertise to run Time-consuming Not necessary for all coasts' problems No winds No winds No winds Ito winds	CORP, Navigos, FOR, SWIMS websites N. Knowledge Hub (69)	Dr. Zuki Domirbilak
MS-Flow D, depth- integrated	Tidal flow, wave-induced cornents, sediment transport, and morphology change Integrated with CMS Wave Tidal flow, wave-induced corners in the corner in the corners in the corner in the corners in the corners in the corner in the	Runs on multi-core desktop machines Typical simulation lengths of several months to years	30+ sites including coastal inlets, estuaries and beaches	Integrated system Robust and fest Resible Cartesian meshes SMS interface Uner-friendly	Depth integrated No boundary fitting capability No awash sens or cross shore sed transport (yet)		Alex Sanches
MS-Wave D, depth- stograted	Full-plane spectral wave generation transformation Integrated with CMS Flow Designed for inlet applications	Runs on PC in SMS, DOS Typical simulation lengths of several months to years	20+ sites: US East and West coasts, Gulf of Mexico 5+ laboratory and theoretical studies	Efficient SAIS interface Theoretical-based wave diffraction, reflection includes structure wave interactions	Empirical wave breaking formula Structured grid	CRP website	Dr. Lihwa Lin
SenCade Diregional each and efet shool valution model	Can represent coestal structures, beach fills, dredging and placeners Induces Inter Reservoir Model* to account for inlet shoal and charmel exclusion "Also available in PC version	flunt on PC in SMS Years to multiple decades Wisee co-citizes nepresenting 1-10 years	Basic V&V completed Shrites: Oralize &av, NC; Sargent Beach, DX; St. Johns County, RL: Point Lookaut, NV	User friendly, easy to learn Conceptual model – first grid oreation and set up integrates complative projects Fast	Empirically based sand transport Explicit solution scheme balution stability) Constrained by standard 1-line model assumptions	O A Section Control of	Ashley Frey
TIM farticle faciling Andel, ar 20/30 ydro nadels	Acint DOER-CHP product Coupled to CMS by CMP Predicts particle transport partmays and fare SMS based interface	Accepts input from CMS and other hydro and soave models Runs or desistep PCs and HRCs [super-computers] Seconds to hours	Basic V&V completed Detailed V&V studies in progress	Fast and efficient Hexible; not tied to any hydro or wave model SMs interface connects to flow and wave models	Not designed for sadiment transport cales Some empirical formulas Too many particles can slow runtimes	O A DOLE O A DOLE O A DOLE	Drs. Tabirth Lackey (DCER), Honghai U (CEP), Zeki Dernirbilek (CEP & DCER)

IWR-NDC CIRP Technology & Products*

Surface Water Modeling System

Web-Tools and Guidance

Mobile Device **Applications**

- CMS-Wave
- CMS-Flow
- PTM

GenCade Bouss-2D

CPT and **CSMART**

CHANNEL SHOALING TOOLBOX

CIRP Website & Wiki Findus on Facebook

Inlets **e**nline

CIRP WEBSITE

Inlet Reservoir Model

INLETS DATABASE RMAP Section 111

Toolbox Berms Inline

Manshore Berm

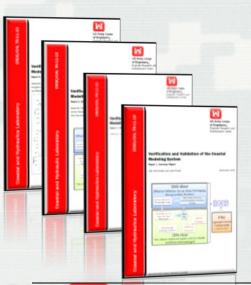
SBAS-PC

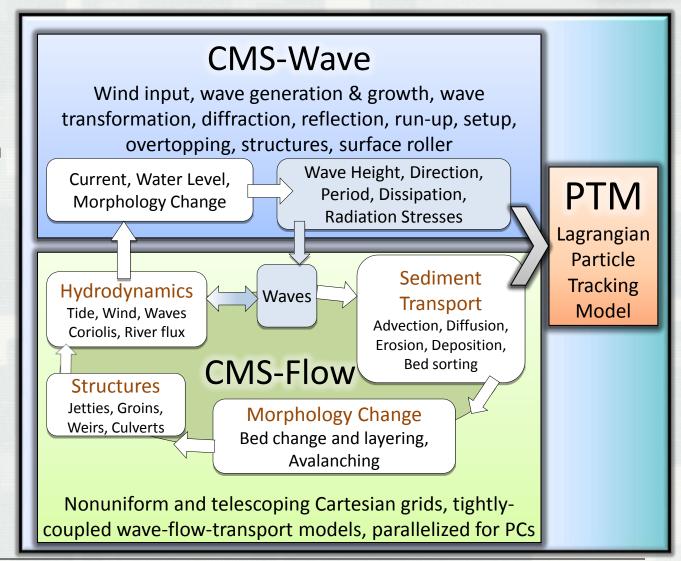
CIRP

Surface Water Modeling System

Mobile Device

- CMS-Wave
- CMS-Flow
- PTM




Coastal Modeling System (CMS)

What is the CMS?

Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS).

Coastal Modeling System (cont.)

Why CMS?

Operational at 12 Districts

Practice-oriented: 1 day simulation ~ 1 hr on PC!

Integrated system for wave-current-morphology modeling

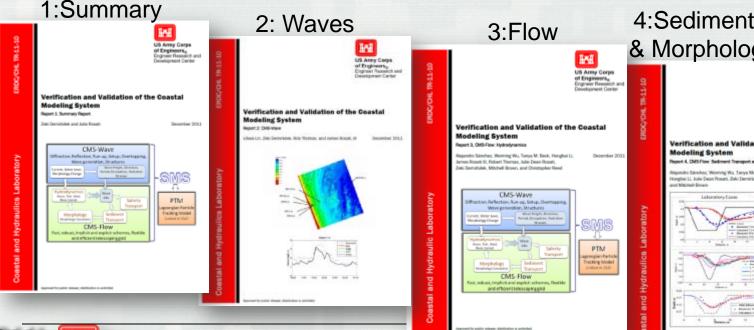
4 Verification & Validation reports document theoretical, laboratory, and real-world applications

Approved by H&H CoP for use in USACE applications

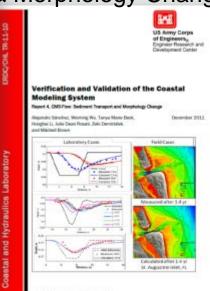
Recent Tech Transfer activities

Feb 2011: Jacksonville, FL

Sep 2011: San Diego, CA


Nov 2011: New York District, NY (DOTS)

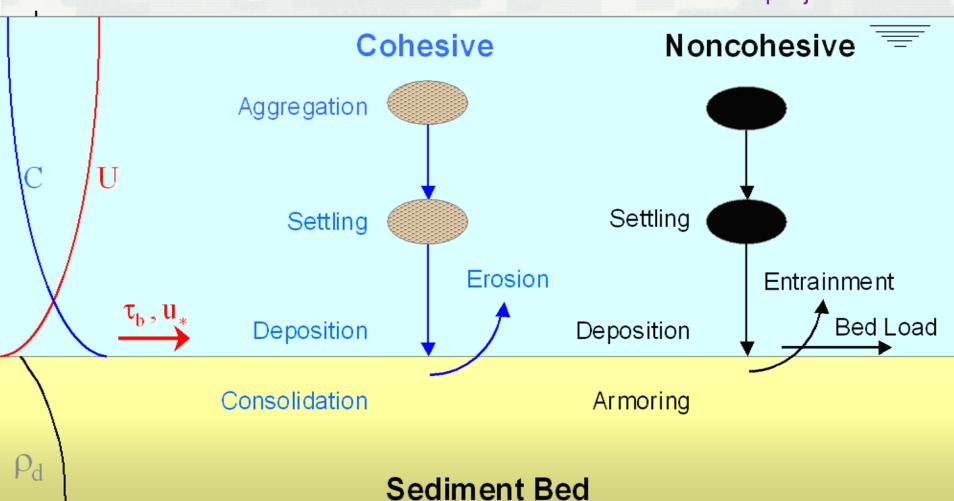
Feb 2012: Baltimore District, MD (DOTS)


Mar 2012: Philadelphia, PA

Coastal Modeling System Accomplishments: Four V&V Reports Published!

- Documents goodness-of-fit statistics for CMS applications:
 - 9 Analytical Cases
 - 13 Laboratory Cases
 - 21 Field Cases
- V&V Study established data bank for coastal wave, flow, and sediment transport model validation

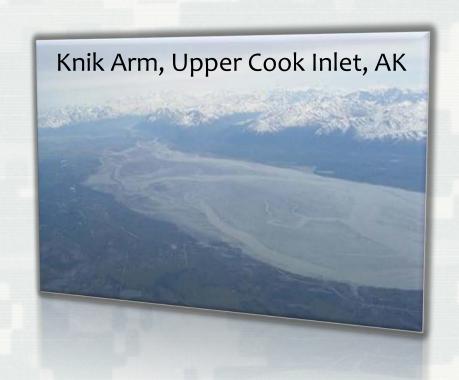
4:Sediment Transport & Morphology Change



FY12 Activities: Implementation of MIXSED into CMS

What is MIXSED?

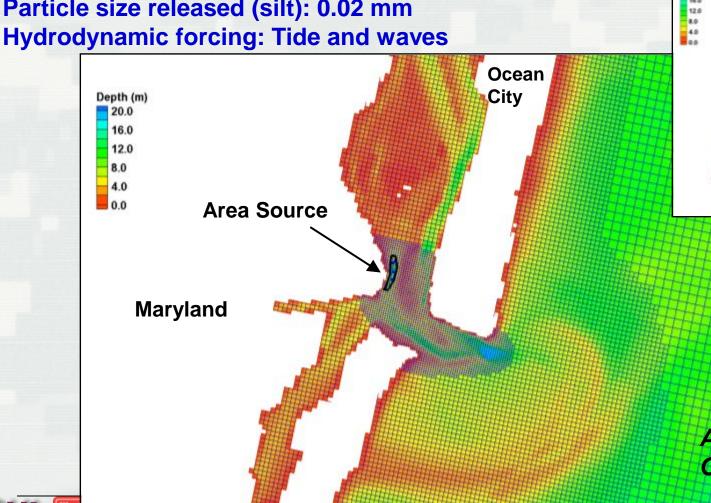
Sediment bed model that enables representation of multiple size classes of cohesive and non-cohesive sediment in coastal projects

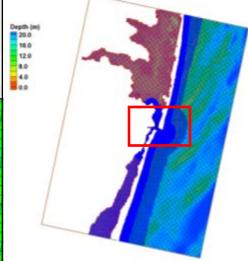


FY12 Activities: Capabilities MIXSED Adds to CMS

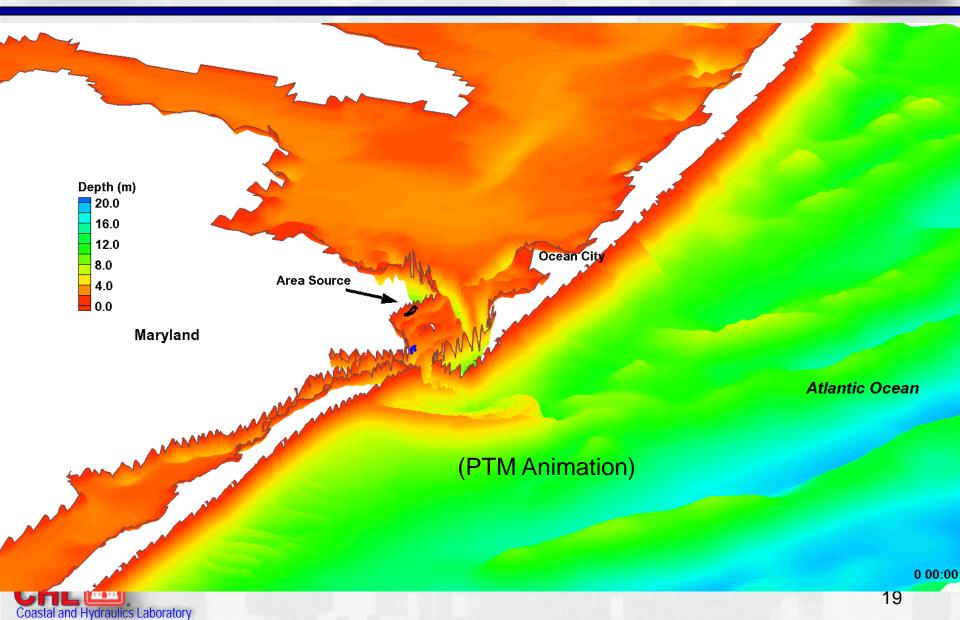
Simulates erosion and transport of mixed cohesive and non-cohesive sediment under combined wave & currents

- Nearshore & offshore O&M placement of mixed cohesive/ non-cohesive sediments
- Sediment transport of mixed sediments in inlets, harbors, bays
- Examples:
 - Mobile Bay, AL
 - Galveston Bay, TX
 - Buzzards Bay, MA
 - Upper Cook Inlet, AK




FY12 Accomplishments: PTM Upgrade for CMS Telescoping Grids

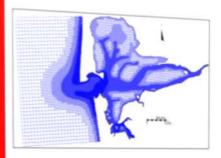
Particle size released (silt): 0.02 mm



Atlantic Ocean

FY12 Accomplishments: PTM Upgrade for CMS Telescoping Grids

FY12 Accomplishments: CMS: Theory & User's Guide



ERDC/CHL TR-12-X

US Army Corps of Engineers, Engineer Research and Development Center

Coastal Modeling System, Report 5: Theory, Numerical Implementation and User Guide for CMS Flow and Sediment Transport Model

Aleşandro Sánchez, Weiming Wu, Julie Rosati, Zeki Demirbilek, DRAFT April 2012 Tanya Bock, Honghai Li, and Mitch Brown

CMS-Flow and Sediment Transport: Theory, Numerical Implementation & User's Guide

- Theory
 - Hydrodynamics
 - Salinity
 - Sediment Transport
- Numerical Methods
- User's Guide
- Appendices: Input and Output Files

Visit the CMS/PTM Booth!

Coastal & Hydraulics Laboratory

Coastal and Hydraulics Laboratory

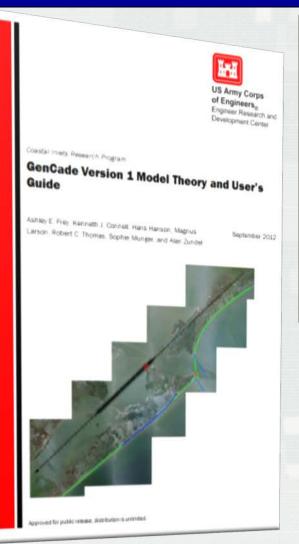
What is GenCade?

- Integrated GENESIS and Cascade models for shoreline change and sand sharing with inlet channels and shoals.
- Connects inlets, navigation channels, ebb and flood shoals, beaches, and engineering activities in a regional framework.
- Decision-making support for planning, operation, and engineering.

Second GenCade Workshop, Aug '11

Why GenCade?

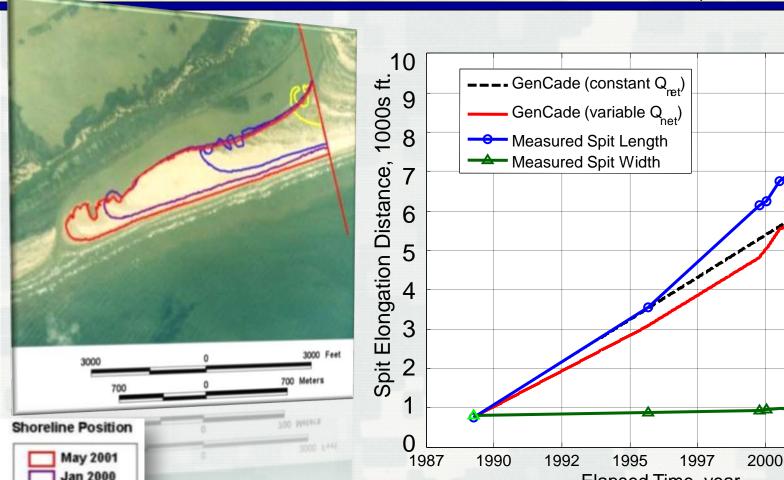
- Sediment storage and transfer (bypassing, back-passing)
- Navigation channel maintenance
- Multiple interacting inlet dredging & placements on beaches
- Cumulative impacts
- Sources & sinks (shoal dredging and beach nourishment)
- Compatibility with previous calculations
- In SMS 11.1; PC, user-friendly interface for engineers & scientists


A.

GenCade FY12 Accomplishments

ERDC/CHLTR-12-XI

Coastal and Hydraulics Laboratory


GenCade Model Theory & User's Guide

- Theory
- Validation
- Interface & User's Guide
 - Input & output files
 - Conceptual model
 - Visualization
 - Calibration & developing alternatives
- Application to Long Island, NY

GenCade FY12 Accomplishments: Spit Growth at San Bernard River Mouth, TX

Need long-term morphologic evolution predictors Tracking Number 2008-N-6

Sep 1995 Apr 1989

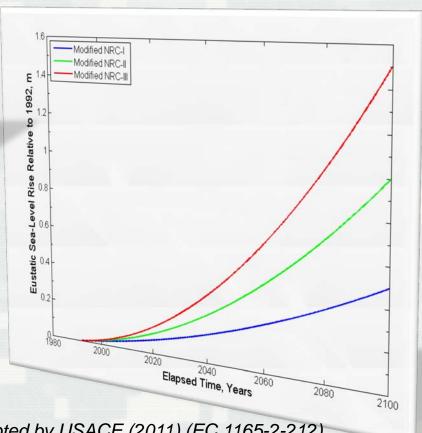
Baseline

2005

2002

Elapsed Time, year

GenCade FY12 Ongoing Activities (cont.)

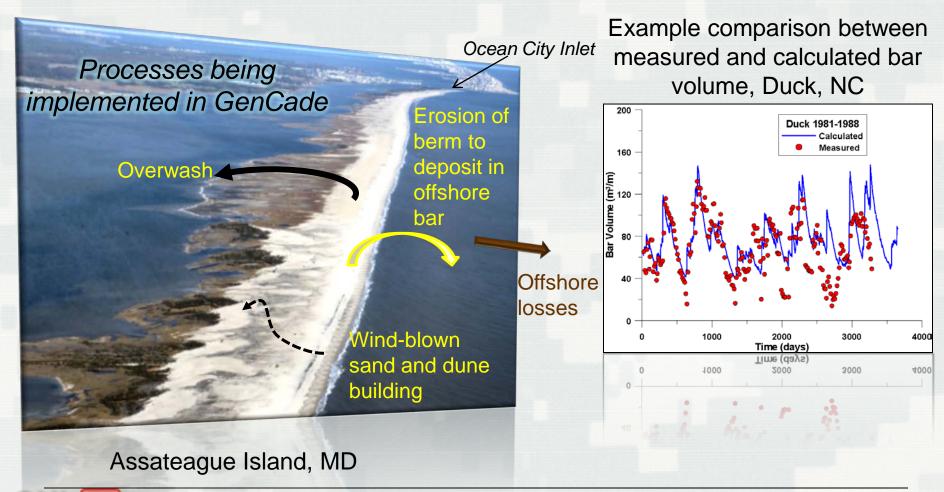

Incorporating Sea Level Change (SLC)into GenCade Calculations*

- Incorporate USACE (2011) methods for range in SLC as GenCade input
- Add change in sea level into GenCade calculations

Engineering and planning incorporating SLC can be investigated with GenCade

*SLC is presently considered in GenCade applications in an ad hoc manner

Adopted by USACE (2011) (EC 1165-2-212) Based on updates to NRC 1987 equation



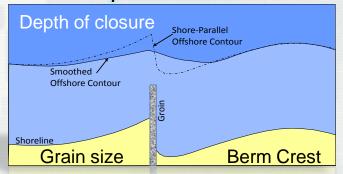
GenCade FY12 Ongoing Activities (cont.)

Incorporating Cross-Shore Transport in GenCade

GenCade FY12-FY13 Activities

CMS-Wave

Wind input, wave generation & growth, wave transformation, diffraction, reflection, run-up, setup, overtopping, structures, surface roller


Option for GenCade to GenCade accept forcing from an external wave model

GenCade output used as input to create an SBAS Calculated Sediment Budget

Variable alongshore parameters

Wiki-TN: Standard Methodology for Calibration and Validation

- Statistical toolkit
- Recommended statistics for acceptable Cal/Val
- Standard, unified approach

CIRP Technology & Products*

Web-Tools and Guidance

Mobile Device

Nearshore Berm Calculator

MetOcnDat: WaveNet

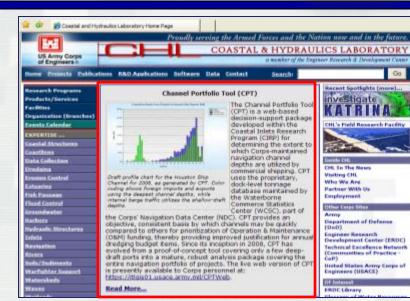
IRM Webtool

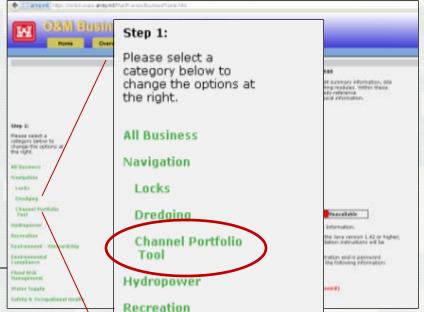
GenCade

Channel Portfolio Tool (CPT)

What is CPT?

Web-based application that relates navigable depths to cargo most vulnerable to shoaling. Allows for detailed, reach-level analysis as well as regional and national summaries of the *waterborne transportation systems* supported by Corps navigation projects.


https://cpt.usace.army.mil


CPT uses data provided by the Waterborne Commerce Statistics Center (WCSC), and is available via the OMBIL portal.

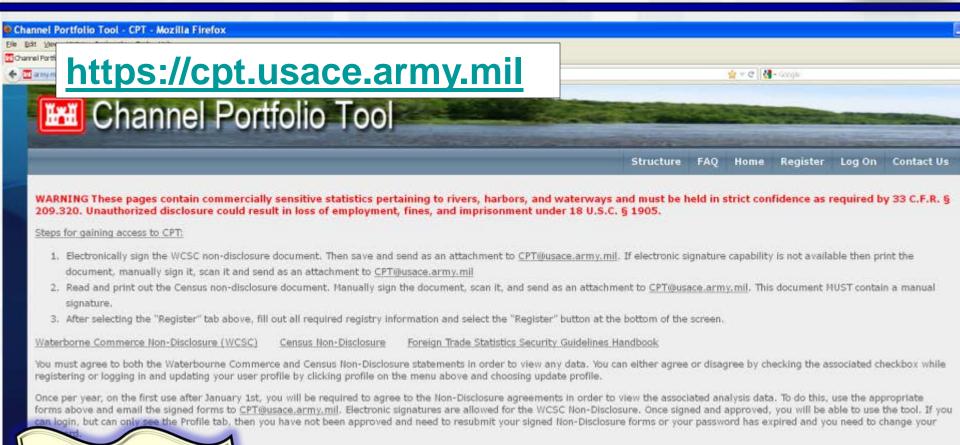
Statements of Need

Improved Justification for and Prioritization of Annual Maintenance Dredging Investments
Tracking Number 2009-N-8

Channel Portfolio Tool (cont.)

Why CPT?

- Navigation project managers need consistent, objective data to justify funding for O&M dredging requests.
- OMB has indicated that improved O&M justification is a precondition for increased outlays from the Harbor Maintenance Trust Fund (HMTF).
- CPT conducts the data processing and filtering necessary for system-level analysis and performance evaluation.



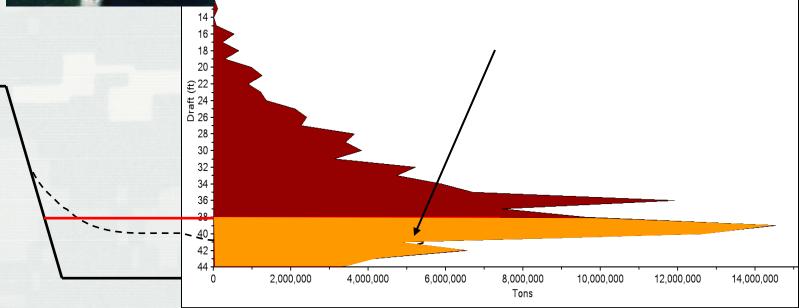
Channel Portfolio Tool (CPT)

Visit the CPT Booth!

elp USACE operations personnel analyze the extent to which maintained navigation channels are used by commercial shipping. Analyses can be rouping of channels treated as a single project. Additionally, USACE planning personnel can use CPT to extract historical data concerning region-lidated statements of traffic for arbitrary listings of projects and channels.

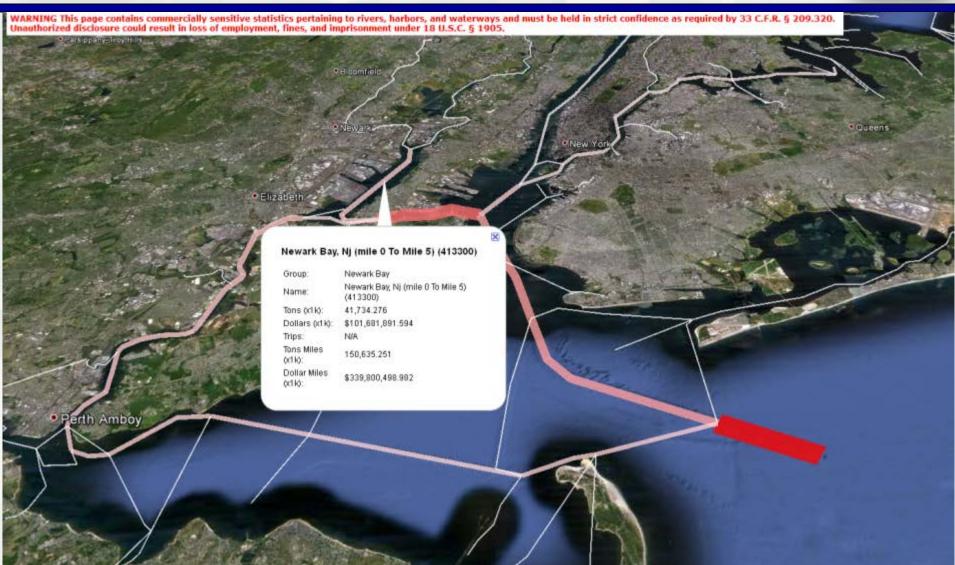
d be directed to Dr. Ned Mitchell at kenneth.n.mitchell@usace.army.mil.

el of prioritization you would like to see.

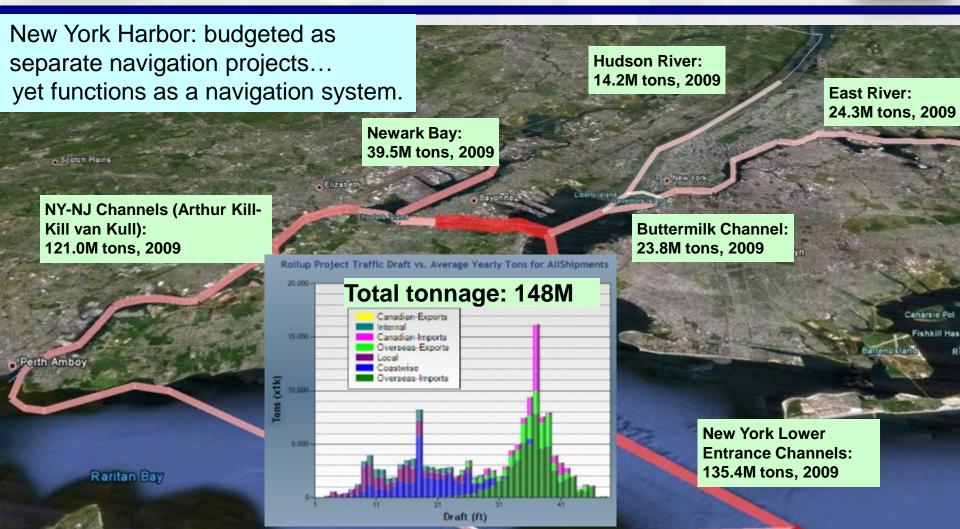


Depth-Utilization Analysis

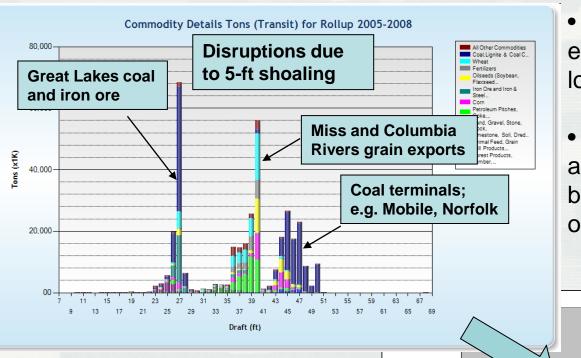
CPT tabulates the historical rates of shoal-vulnerable tonnage transiting navigation channels and uses the respective quantities as a basis for prioritizing O&M dredging jobs.



Visualization with CPT

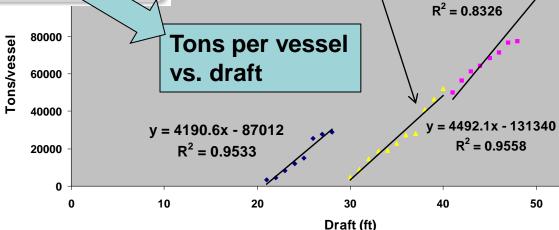


CPT and Navigation Systems


CPT is helping to ensure that Project O&M budgeting considers channel depthutilization, cargo types, and system interdependencies (i.e. condition of other projects!).

lat 40.571329' lon -74.079482' elev -2 ft Eye at 12.

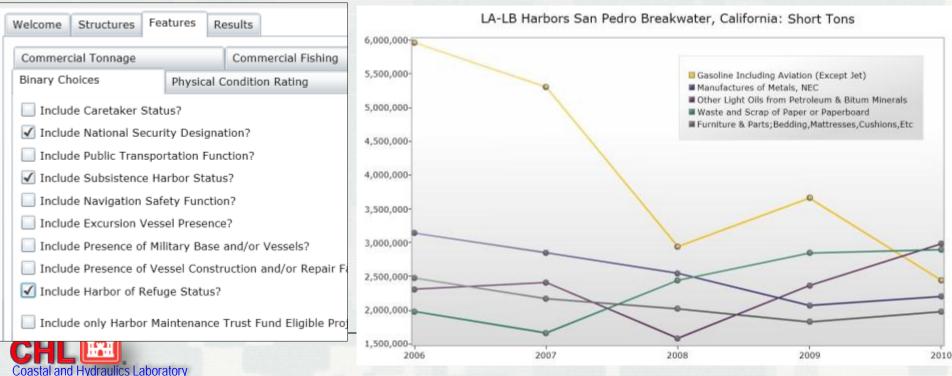
Quantifying Impacts of Shoaling


- Scalable approach for quickly estimating cargo that must be lightloaded due to shoaling conditions.
- Slopes of trend lines indicate the average amount of cargo that must be removed from each vessel in order to reduce vessel draft by 1-ft.

4,500 tons/vessel/ft of depth

y = 5999.8x - 199378

 Approach can be extended to total annual cargo disruptions, number of required additional voyages, and ultimately increased shipping costs.

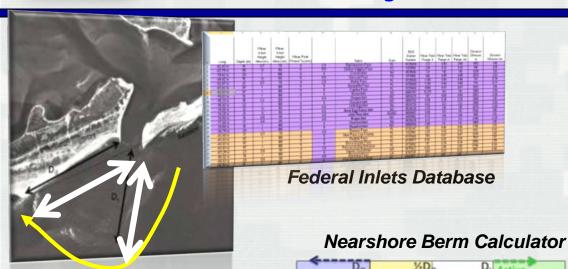

Coastal Structures Management, Analysis, and Ranking Tool (CSMART)

What is CSMART?

Web-based, Silverlight application that prioritizes coastal structures according to user-specified criteria and weightings on metrics such as condition rating, commercial tonnage, fish landings, and cruise and ferry passengers. Allows local, regional, and national queries and comparisons.

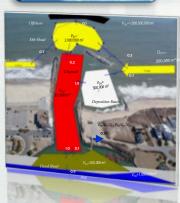
https://itlgis01.usace.army.mil/CPT/Silverlight/CSMART

Structure Prioritization via CSMART



Geomorphologic Webtools

...seamless connecting data with models and online tools


Inlets Online

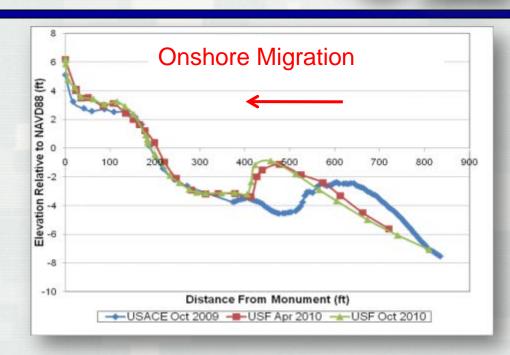
Inlet Reservoir Model (Web-based Version)

Inlets and Berms Online Databases

to Common Web Platform

- Geomorphic Properties of Inlets (Hayes Diagram Reform; Ebb Shoal Dimensions)
 - Define areas of influence of inlets
- Berms Online Database
- Nearshore Berm Calculator
- Inlet Reservoir Model (Web Version)

Action 3.2.1 of Navigation Strategic Vision "Develop an inventory of all federal authorized projects..."


FY12 Nearshore Berms

Questions

- Placement Method:
 Pump vs. Hopper Dredge
- Quantity and Rigor of Design:
 "Dumped" vs. Designed
- Cross-shore Location:
 Feed sand vs. wave break
- Alongshore Location:
 Relative to inlet; gaps required?
- Environmental Concerns:
 Dispersion of fines over habitat

Statements of Need

Design and Evaluation Tool for Nearshore Berm Placement of Non-Beach Compatible Material Tracking Number 2011-N-15

Nearshore Placement of Dredged Sediment Assessment Tracking Number 2011-N-19

FY12 Nearshore Berms Products

Berm Crest Location

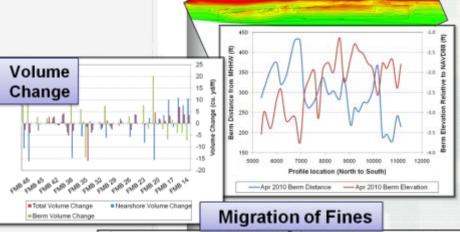
Sediment dispersion

Bathymetric change and berm migration rates

Pensacola Berm (In Monitoring Phase)

Sediment dispersion

Alongshore migration rates

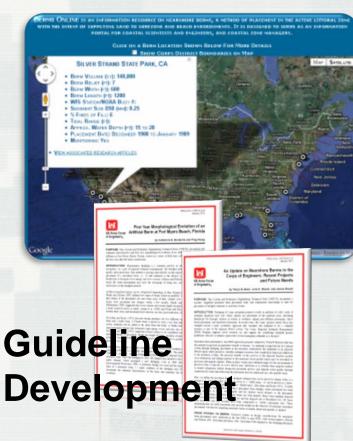

Pensacola channel infilling rates

Egmont Berm (In Monitoring Phase)

Pre-project site characterization

Post-placement evolution

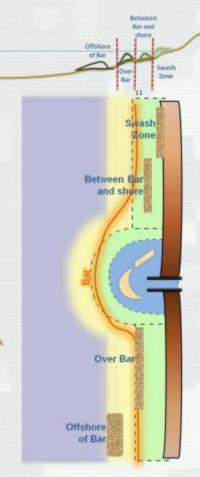
Action 3.2.2 of Navigation Strategic Vision "Establish practices...optimize environmental windows...maximize beneficial use of O&M"



FY12 Nearshore Berms

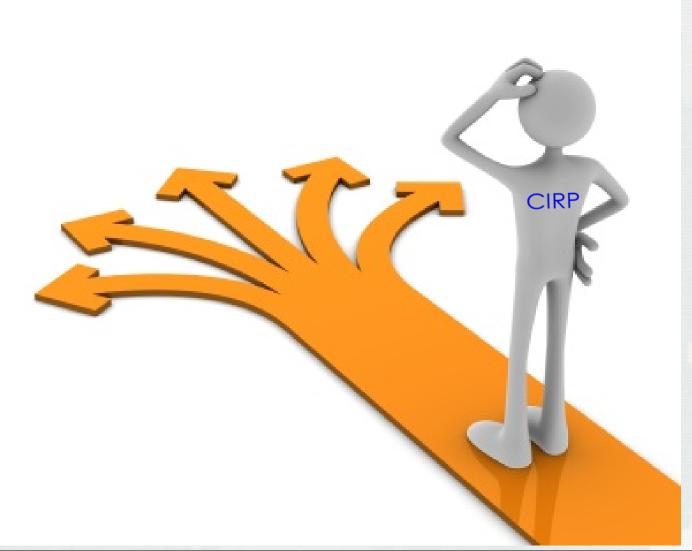
Berms Online:

A Nearshore Berm Historical Database



Simple Planning Calculator Tool

- Developing flexible tools (rapid desk-top to detailed models) for design
- Dredged sediment size(s) and volume
- Placement position in crossshore, and soon in alongshore
- Site processes represented through empirical formulae


Check out the Berm Booth!

CIRP Future

CIRP Vision for O&M Decision-Support

cirp.usace.army.mil

Advance R&D in models and tools

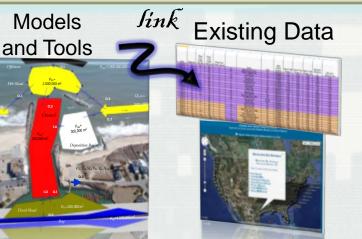
Link to existing data and databases

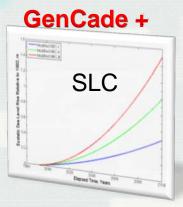
Produce accurate calculations with quantified goodness-of-fit

Roll up calculations to speed interpretation

Generate graphical and quantitative output for decision-support

Speed delivery of results to customers


Examples...



Please let us know if you have more ideas!

Other

GenCade

Coastal and Hydraulics Laboratory

Models

and Tools

Field Data at Degraded Jetty/Breakwater

- Decision-support guidance for rehab given damage rate & SLC
- Many federal structures 50+ years old
- Validate wave overtopping, transmission, and sand transport through rubblemound structures
- Rehabilitation multi-million \$
- Consider archived AIS vessel movement; is wave transmission through jetties creating navigation hazards?

Action 3.2.3 of Navigation
Strategic Vision
"Develop science &
engineering risk-management
approach...to nationally rank
reliability of navigation
projects"

Statements of Need

Improving Wave Calculations at Coastal and Estuarine Navigation Channels Tracking Number 2009-N-5

Statements of Need

Automatic Identification System (AIS) data use in Navigation operations and engineering. Tracking Number 2013-N-5

CIRP Existing and Future SoNs

Presently Addressing 5 SoNs:

Statements of Need

Need long-term morphologic evolution predictors Tracking Number 2008-N-6

Statements of Need

Design and Evaluation Tool for Nearshore Berm Placement of Non-Beach Compatible Material Tracking Number 2011-N-15

Nearshore Placement of Dredged Sediment Assessment Tracking Number 2011-N-19

Statements of Need

Improved Justification for and Prioritization of Annual Maintenance Dredging Investments Tracking Number 2009-N-8

Statements of Need

Dynamic Web-link and analysis of environmental Database for Coastal Inlet, Harbor, and Estuary Wave Modeling Projects
Tracking Number 2011-N-10

CIRP Existing and Future SoNs

Propose Adding 4 More in FY13 (discuss Thu):

Statements of Need

Identifying and Addressing Potential Sea Level Change Impacts to Navigation Projects Tracking Number 2013-N-11

Statements of Need

Automatic Identification System (AIS) data use in Navigation operations and engineering.

Tracking Number 2013-N-5

Statements of Need

Automated Feature Extraction for Sediment Budgets Tracking Number 2013-N-15

Statements of Need

Improving Wave Calculations Tracking Number 2009-N-5

Thank you!

Ned, Mary Beth, David, and baby John Mitchell

