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Outline


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
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
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
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
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
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
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1. Overview of CMS-Wave


 

Steady-state (time-independent), half-plane, two- 
dimensional spectral transformation solved by 
finite-difference, forward-marching implicit 
scheme


 

PC-based efficient model, stand-alone or coupled 
to CMS-Flow, a circulation and sediment transport 
model, through the SMS interface


 

Emphasis on wave-structure-land interactions for 
practical coastal engineering projects



4Coastal Inlets Research Program Technology Transfer Workshop 4

2. Capabilities


 

Wave diffraction, reflection (forward & 
backward), breaking, bottom friction dissipation


 

Wind input, wave-current interaction


 

Wave transmission at structures


 

Wave run-up, overtopping, overland flow


 

Variable grids with nesting


 

Nonlinear wave-wave interaction & infra-gravity 
waves


 

“Fast mode” for quick calculations & prelim runs
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CMS-Wave and STWAVE

CMS-Wave and STWAVE (half-plane) Comparison
Capability CMS-Wave STWAVE
Spectrum transformation Directional Directional

Refraction & shoaling Represented Represented
Depth-limited wave breaking Choice among four formulas One formula
Roller Represented None
Diffraction Theory Smoothing
Reflection Represented None
Transmission Formulas None
Run-up and setup Theory None
Wave-current interaction Theory Theory
Wave-wave interaction Theory Semi-empirical
Wind input Theory Semi-empirical
White capping Theory Semi-empirical
Bottom friction Theory Theory

S
tru

ct
ur

es
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CMS-Wave SMS 10.1 Interface
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3. Governing Equation

Wave-Action Balance Equation with Diffraction

where                  , wave-action spectrum
and                      , wave directional spectrum.
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

 
NDBC/NOAA Ocean Buoys



 
CDIP Coastal Buoys



 
Project specific measurements (ADCP)



 
Theoretical spectra (SMS)

4. Incident Wave Spectrum
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Theoretical Spectrum

A single input spectrum applied along the seaward 
boundary,
e.g., a JONSWAP type:

where

and  s  is the directional spreading parameter.
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Idealized Directional Distribution
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SMS10.1 Wave Spectrum Display
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5. Wave-Current Interaction



 
Solving for wave number k in dispersion equation with 
a current:



 
Computing wave radiation stresses:  
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6. Jetty Breakwater Wave Diffraction 
and Reflection
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Incident wave:
2 m, 15 sec
from NE

with infra-gravity wave

without infra-gravity wave

Infra-gravity Waves at  Humboldt Bay, CA
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7. Wind-Wave Generation
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Wave Breaking Formulas

Current field
Runs 5-8

Current field
Runs 9-12
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Wave Generation in Matagorda Bay, TX

Rita

Hurricane Rita
0400 UTC, 24 September 2005
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Variable Rectangular-Cell Grids

Variable-rectangular cells
Total 223 x 172 cells

Square (20 m x 20 m) cells
Total 316 x 426 cells
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CMS-Wave on Variable Grids

Variable-rectangular cells
Total 223 x 172 cells

Square (20 m x 20 m) cells
Total 316 x 426 cells
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Grid Nesting

Gulf of Mexico Gulf of Mexico

Regional grid

Local grid
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Regional Wave Generation 
Incident Waves: 12.9 m, 13.8 sec, from S

Without wind With wind (27 m/sec, from S)

9.05 m 8.85 m

Max Surge: 3.5 m (Return Period = 50 yrs)
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8. Wave Run-up

Wave run-up: rush of waves up a slope or
structure

Two-percent run-up, R2 : the vertical up-rush
level exceeded by 2-percent of the larger
run-up height

Ahrens & Titus (1981), Mase & Iwagaki (1984)
~ 400 laboratory experiments
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Wave Run-up Calculation

Total run-up R2 = wave setup + 2% exceedance of swash level

Wave setup:                                           ,

Max setup (Guza and Thornton, 1981):

Total runup R2 (2% exceedance) = 2           (Komar, 1998)

Max water level = max of (     + Hs / 2 , R2 )

* Wave setup and max water level field are saved in setup.wav
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Specify Feature Cells in SMS10.1



25Coastal Inlets Research Program Technology Transfer Workshop 25

Floating Breakwater

An analytical formula of the transmission coefficient
for a rectangle floating breakwater of width B and
Draft D (Macagno 1953):

1
2 2

sinh
21

2cosh ( )t

khkB
K

k h D



  
  
          



26Coastal Inlets Research Program Technology Transfer Workshop 26

Bottom-Mound Breakwater

Vertical wall breakwater (Kondo and Sato, 1985):

Composite or rubble-mound breakwater:

where      is the crest height (above mean water level)
and        is the incident wave height. 
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Idealized Island Example

20 feature cells

input depth
= 10 m

incident wave:
2 m, 6 sec,
30 deg oblique
(gamma = 4)

20
9 10

10 10
11 10
12 10
13 10
9 11

10 11
11 11
12 11
13 11
9 15

10 15
11 15
12 15
13 15
9 16

10 16
11 16
12 16
13 16

struct.dat
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Idealized Floating Breakwater

20 feature cells

Input depth
= 10 m

incident wave:
2 m, 6 sec,
30 deg oblique
(gamma = 4)

draft = 2 m

20
9 10 3 2

10 10 3 2
11 10 3 2
12 10 3 2
13 10 3 2
9 11 3 2

10 11 3 2
11 11 3 2
12 11 3 2
13 11 3 2
9 15 3 2

10 15 3 2
11 15 3 2
12 15 3 2
13 15 3 2
9 16 3 2

10 16 3 2
11 16 3 2
12 16 3 2
13 16 3 2

struct.dat
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Idealized Platform

20 feature cells

input depth
= 10 m

incident wave:
2 m, 6 sec,
30 deg oblique
(gamma = 4)

platform elev.
= 1 m (mwl)

20
9 10 4 1

10 10 4 1
11 10 4 1
12 10 4 1
13 10 4 1
9 11 4 1

10 11 4 1
11 11 4 1
12 11 4 1
13 11 4 1
9 15 4 1

10 15 4 1
11 15 4 1
12 15 4 1
13 15 4 1
9 16 4 1

10 16 4 1
11 16 4 1
12 16 4 1
13 16 4 1

struct.dat
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Submerged Platform

20 feature cells

input depth
= 10 m

incident wave:
2 m, 6 sec,
30 deg oblique
(gamma = 4)

platform elev.
= -2 m (mwl)

20
9 10 4 -2

10 10 4 -2
11 10 4 -2
12 10 4 -2
13 10 4 -2
9 11 4 -2

10 11 4 -2
11 11 4 -2
12 11 4 -2
13 11 4 -2
9 15 4 -2

10 15 4 -2
11 15 4 -2
12 15 4 -2
13 15 4 -2
9 16 4 -2

10 16 4 -2
11 16 4 -2
12 16 4 -2
13 16 4 -2

struct.dat
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Wave Transmission Experiment (Goda, 2000)

KR

KR

KT

KT cm

8.1

13.5

0 0.5 1.0 1.5 2.0

KR

KT

0

0.5

1.0

HI HR HT
hc

dh

HI

d/h = 0.5

hc/HI

KR

KR

KT

KT cm

8.1

13.5

0 0.5 1.0 1.5 2.0

KR

KT

0

0.5

1.0

HI HR HT
hc

dh

HI

d/h = 0.5

hc/HI

Regular waves

Transmission coefficients kt
Hi = 1 m, Tp = 6 sec (monochromatic wave)
h = 10 m, d = 5 m, B = 80 m

hc (m) CMS-Wave Equations

Vertical 
wall

Rubble 
mound

Vertical 
wall

Rubble 
mound

-2.0 1.02 1.02

-1.5 1.03 1.03

-1.0 0.78 0.78

-0.5 0.63 0.63

0.0 0.46 0.34 0.45 0.33

0.5 0.27 0.18 0.30 0.18

1.0 0.15 0.04 0.15 0.03

1.5 0.10 0.024

2.0 0.07 0.018

Random waves
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Wave overtopping: Surge level = 0.81 m (3 ft) 
Hs = 0.88 m, Tp = 10.1 sec (Hughes, 2008)

1

2

3

4

5

ERDC/CHL TR-08-10
by Hughes (2008)
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Calculated Wave Overtopping R127 
Surge level =1.3 m, Hs =2.3 m, Tp =14 sec

Coupled CMS-Flow
and CMS-Wave
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Calculated Wave Overtopping Rate

Case
number

Surge 
level (m)

Wave 
height (m)

Wave peak 
period (sec)

Overtopping rate (m2/sec)

Measured CMS-Flow CMS-Wave

R128 0.29 0.27 0.28*

0.29 0.82 6.1 0.38 0.38 0.39

R109 0.29 0.26 0.28*

0.29 2.48 13.7 0.70 0.85 0.92

R121 1.3 2.55 2.57*

1.3 2.30 6.1 2.67 2.93 2.76 

R127 1.3 2.54 2.57*

1.3 2.31 14.4 2.84 2.98 2.81

* Calibration With wave overtopping
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Muddy Bottom

Wave dissipation by damping (Lamb, 1932):

where       is the kinematic viscosity of sea water,

and        is the turbulent eddy viscosity:
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(a)(a)

(b)(b)

Louisiana Muddy Coast Simulation
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CMS-Wave Fast Mode

• Fast mode uses 5 to 7 directional bins with spectral calculations
(Standard runs with 35 directional bins)

Standard run Fast mode

• Ideal for quick applications, prelim runs, time-pressing project
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Nonlinear Wave-Wave Interaction

diffraction in dp nl
DA S S S S
Dt

   Governing Equation:

where         is the nonlinear
wave-wave interaction term

nlS

Anisotropic       :                                           (Jenkins & Phillips, 2001)nlS
2

2( ) ( )nl
B BS a b 
 
 

 
 

where 2
2

1 [1 (2 1) cosh 2 ] 1,     
2

aa n kh b
n n

    

and
4

3 5 4 3
2 [( ) ]

(2 )
onB k E

g




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Exact and Calculated

2  5 

( )nlS f
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Spectral Evolution and ( , )nl fS 

5 
Initial

Evolved

( , )nl fS 
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Nonlinear Wave Effect

DeepIntermediateShallow DeepIntermediateShallow
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9. Coupling with CMS-Flow

Matagorda Ship
Channel Model

Domain
CMS-Wave

Morphological
Change

South
Jetty
Breaching

CMS-Flow

Breaching at Jetty, Simulation at Matagorda Ship Channel, TX

(MSC)
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Sample CMS Steering SMS 10.1 Interface

CMS-Wave
grid

CMS-Flow grid
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MSC Jetty Wave Run-up & Breaching 
Cat 3 Hurricane (50-Yr Life-Cycle)

Initial bathymetry After 12-hr simulation                  

• Peak storm surge level reaches 3.5 m between Hrs 4 and 8
• Incident offshore wave is 7.6 m, 14.3 sec, from south

S. Jetty 
breaching

N. Jetty 
breaching
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MSC Jetty Wave Run-up & Breaching 
Cat 3 Hurricane (50-Yr Life-Cycle)

Storm surge over the initial bathymetry South Jetty breach in 12-hr simulation

• Peak storm surge level reaches 3.5 m between Hrs 4 and 8
• Incident offshore wave is 7.6 m, 14.3 sec, from south

180-m wide & 3.5-m deep breach

Slope scour
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Calculated 30-day Morphology Change 
Tombolo Development

CMS
Steering Interval
= 4 hr

Grain Size
= 0.18 mm

Hydro time step
= 0.25 sec

Transport and
morphology
calc time step
= 9 sec
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10. Future Development


 
Permeable breakwaters


 
Binary (XMDF) input/output


 
Telescoping grids


 
Dynamic memory


 
Full-plane transformation
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Conclusions


 

CMS-Wave designed for wave-structure-land 
interactions for inlet and nearshore applications


 

Coastal inlet-specific processes represented


 

Emphasis on computational speed and SMS 
integration for PC users


 

Coupled to CMS-Flow for sediment transport 
and morphology change 
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http://cirp.usace.army.mil/products/index.html
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