

Rapid screening of partially submerged coastal structure designs using Boussinesq numerical modeling

¹Cold Regions Research & Engineering Laboratory, U.S. Army Engineering Research & Development Center, Hanover, NH 03766 ²Coastal & Hydraulics Laboratory, U.S. Army Engineering Research & Development Center, Vicksburg, MS 39180

- protection, and beach stabilization.
- applicability in modern applications

Marissa J. Torres¹, Matt Malej², Michael-Angelo Y. Lam²

(603) 646-4283

Connect planning and design strategies with highfidelity numerical modeling practices to: Improve management and design Increase reliability of actions \succ Reduce or minimize maintenance, rehabilitation, and operating costs

Structure Design Properties

Surface	Porosity
Smooth	Permeable
Rough	Impermeable

Wave Climate Properties

	Dimension	Wave Period
tic)	1D	Short
a)	2D normal 2D oblique	Long

• Prepare, execute, and troubleshoot simulations

- Provide deterministic guidance on:
 - Amount of wave energy dissipation provided by the structure Wave run-up exceedance probability
 - Wave overtopping rate in extreme scenarios

Provide modeling guidance on FUNWAVE Wiki

- Future considerations include:
 - Alternate structure configuration (multiple structures)
 - Validation with physical models (NNBF materials)
 - Expansion of FUNWAVE DoD Portal Application

