

Wave and circulation modeling of infrastructure installation at Rota Harbor in Northern Marianna Islands

Lihwa Lin, Zeki Demirbilek, and Jessica Podoski US Army Corps of Engineers

126TH ANNUAL CONFERENCE & EXPOSITION

- Background & Objectives
- Numerical Models & Settings
- Wave & Hydro Simulations
- Modeling Alternatives
- Summary & Conclusions

126TH ANNUAL CONFERENCE & EXPOSITION

Background

- Rota, approx. 60 km northeast of Guam, is the southernmost island of the Commonwealth of the Northern Mariana Islands (CNMI)
- Rota harbor, a small commercial harbor, located on the northwest coast of Rota was constructed by the US Army Corps of Engineers (USACE) between 1978 and 1985.
- The existing harbor has exposed to frequent high waves and strong currents affecting safe navigation and port operations.

Objectives

- Assemble survey and field data for input to numerical models
- Apply a Coastal Modeling System (CMS) wave and hydrodynamic models in the present study
- Conduct wave and flow modeling to evaluate proposed alternatives for improving navigation and harbor usability

126TH ANNUAL CONFERENCE & EXPOSITION

Coastal Modeling System (CMS)

- A suit of timedependent flow, salinity, wave, & mixed sediment transport models
- Physics-based to simulate complete coastal processes
- Integrated with visual interface thru Surfacewater Modeling System (SMS)

126TH ANNUAL CONFERENCE & EXPOSITION

CMS Model Domain

A rectangular domain

- ~ 2 km x 4.4 km
- extends offshore to
 max 300-m isobath
- variable cell spacing
 ~ 4 m (harbor area)
 to 60 m (far field)
- vertical datum is in Mean Sea Level (MSL)
- horizontal coordinates in UTM 55

126TH ANNUAL CONFERENCE & EXPOSITION

Available Data Stations near Rota

- CDIP Buoys 196 & 197: wave data available from 2012 to present
- NOAA Stations 163000 (since 1976) &1631428 (since 2004): wind & water level data
- Wave Information Studies (WIS) hindcast: hourly wind & wave database (1980-2011)
- WaveWatch III (WW3) nowcast: wind wave database (2005 to present)

126TH ANNUAL CONFERENCE & EXPOSITION

Buoys 196 & 197 Wave Roses (2013 & 2014)

- Waves at Buoy 196 are sheltered by Guam
- Waves at Buoy 197 are sheltered by Saipan
- Trade wind effect is strong at both buoys

126TH ANNUAL CONFERENCE & EXPOSITION

WIS 81102 Wind & Wave Roses (1980-2011)

126TH ANNUAL CONFERENCE & EXPOSITION

Northern Marianna Islands: A Typhoon/Hurricane Alley

CAT3 and above, 1945-2015 (45 tracks)

CAT5 and super typhoon, 2000-2010 (9 tracks)

126TH ANNUAL CONFERENCE & EXPOSITION

NOAA 1630000 Apra Harbor, Guam Extreme Water level Curve (1977-2016)

Return Period (yr)	2	5	10	20	50	100
Gumbel, WL (m)	0.59	0.66	0.71	0.77	0.85	0.90
tanh ^β (αx), WL (m)	0.59	0.66	0.71	0.77	0.85	0.90

Mean tidal range ~ 0.5 m

Great diurnal range ~ 0.75 m

126TH ANNUAL CONFERENCE & EXPOSITION

Field Data Collection December 2016 – February 2017

- 3 ADCP instruments for wave measurements (offshore and inshore stations collected directional wave data while basin station wave data is non-directional)
- A solar powered anemometer collected wind data (Met Sta)
- Wind & wave data were used in model calibration

126TH ANNUAL CONFERENCE & EXPOSITION

Model Wave Calibration December 2016

126TH ANNUAL CONFERENCE & EXPOSITION

126TH ANNUAL CONFERENCE & EXPOSITION

Alts 0 to 3 Configurations (5 Transects: T1 – T5)

Alt 0 – existing configuration

Alt 1 – add a detached breakwater*

Alt 2 – add an attached north breakwater*

Alt 3 – connect Alt 1 and Alt 2 breakwaters

* Breakwater elev.

= 3.25 m in Alt 1

= 2 m in Alt 2

126TH ANNUAL CONFERENCE & EXPOSITION

Incident Wave Conditions

Offshore Wave Forcing Parameters	Increments		
Significant Wave Height (m)	0.61*, 0.91, 1.22, 1.52, 1.83**		
Corresponding Peak Period (sec)	11, 13, 14, 14, 14		
Mean Direction (deg, meteorological)	300, 320 ⁺ , 330		
Water Level, MSL (m)	0, 0.3 ⁺⁺		

- * Maximum wave height for safe harbor access at entrance channel
- ** Storm wave height for breakwater design
- + 320° wave direction is aligned with harbor entrance channel centerline
- ++ Mean Higher High Water (MHHW)

126TH ANNUAL CONFERENCE & EXPOSITION

Example of Model Wave Fields (Input Wave: 1.22m, 14sec, 320°)

126TH ANNUAL CONFERENCE & EXPOSITION

Example of Model Current Fields

(Input Wave: 1.22m, 14sec, 320°)

126TH ANNUAL CONFERENCE & EXPOSITION

Model Wave Heights along T1 (Input Wave: 0.61m, 11sec, 320°)

126TH ANNUAL CONFERENCE & EXPOSITION

Model Wave Heights along T5 (Input Wave: 0.61m, 11sec, 320°)

126TH ANNUAL CONFERENCE & EXPOSITION

Harbor 12-Hr Daytime Usability

Alt	Percent usable (1980-2011)*	Percent usable (worst year)*
0	82.8 %	71.8 % (1997)
1	86.5 %	76.8 % (2004)
2	83.6 %	73.6 % (1997)
3	91.4 %	83.8 % (2004)

^{*} Include 0 and 0.3 m water level input, and all incoming wave directions between 230 and 360 deg, and between 0 and 50 deg.

- Hs < 0.61 m (2 ft) in the entrance channel
- Hs < 0.3 m (1 ft) at harbor docks and marina

126TH ANNUAL CONFERENCE & EXPOSITION

Summary & Conclusions

- The CMS modeling was conducted for the existing Harbor (Alt 0), with a detached breakwater (Alt 1), the north breakwater (Alt 2), and the dogleg breakwater (Alt 3).
- Model results show wave breaking on adjacent reef flat causing return flow in the entrance channel. The magnitude of return flow is approximately proportional to the breaking wave height.
- Alts 2 and 3 outperform Alts 0 and 1 in terms of wave height and return flow reduction in the entrance channel.
- Alt 3 provides the best percentage of harbor usability. However, the cost of breakwater construction & maintenance can be high.
- Alternatively, a shorter structure in Alt 3 may be considered.

126TH ANNUAL CONFERENCE & EXPOSITION

Thank You!

Questions?

Lihwa Lin, Email: Lihwa.Lin@usace.army.mil

Zeki Demirbilek, Email: Zeki.Demirbilek@usace.army.mil

126TH ANNUAL CONFERENCE & EXPOSITION