GenCade Modernization/Update: New Capabilities and Probabilistic Shoreline Change Modeling

Yan Ding, Ph.D., **Research Civil Engineer**

Sung-Chan Kim, Rusty L. Permenter, Richard Styles, and **Ashley E. Frey**

U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL)

Presented in GenCade Short Course, CS19, St Petersburg, Fl, May 27, 2019

US Army Corps of Engineers.

AND HY

BORATO

Outline

- New Capabilities in GenCade:
 - New Processes: Estimation of <u>Cross-shore Sediment Transport</u>, Shoreline Retreat due to <u>Sea Level Rise and Subsidence</u>
 - New Simulation Approach: Probabilistic Shoreline Change Modeling using <u>Monte-Carlo Simulation</u>
- Validation of GenCade new Processes:
 - CHL Field Research Facility in Duck, NC
 - Fenwick Island, DE with inclusion of Beachfills
 - Indian River Inlet, DE
- GenCade-based Monte-Carlo Simulation for Risk Estimation of Shoreline Change
- Probabilistic Shoreline Change Modeling for Duck coast
- Remarks

Long-Term Shoreline Changes

- Prediction of long-term shoreline changes is a key task in coastal management practice.
- Multiple physical processes drive shoreline changes: wave, wind, tide, storm, current, sea level change/subsidence, sediment properties, longshore/cross-shore sediment transport, human activities (structure installation, beach refill, beach recreation),etc.
- Shoreline changes induced by natural physical processes in general are highly irregular.
- Probabilistic shoreline change prediction is needed for best shoreline management practice for long-term protection purpose.
- Uncertainty estimation of shoreline changes is required for best shoreline erosion control management.

BUILDING STRONG_®

Shoreline Change due to Coastal Management Practices

- Construction or modification of inlets for navigational purpose
- Construction of harbors with breakwaters built in nearshore regions
- Beachfills (sand nourishment)
- Sand Bypass
- Sand Mining
- Dredging Material Disposals

GenCade: USACE Shoreline Evolution Simulation Model

- GenCade: A one-dimensional shoreline <u>change</u> model driven by longshore sediment transport, including modules for inlet-sand sharing, beach nourishment, structure effect, etc.
- Combines the engineering power of GENESIS with the regional processes capability of the Cascade model.
- Development began in 2009, GenCade Version 1 in SMS Ver. 11.1 was released in 2012 (Frey et al. 2012)
- Applications in US and other international coasts.

Top: Onslow Bay, NC (for SAW) Bottom: Galveston, TX (Galv. Park Board)

Innovative solutions for a safer, better world

BUILDING STRONG_®

Longshore Sediment Transport Energy Flux Method (CERC formula)

$$Q = H_b^2 C_{gb} \left(a_1 \sin 2\alpha_b - a_2 \cos \alpha_b \frac{\partial H_b}{\partial x} \right)$$

Innovative solutions for a safer, better world

BUILDING STRONG_®

Cross-Shore Sediment Transport vs Nearshore Wave Asymmetry and Nonlinearity

Contributors to Cross-Shore Transport:

- Sandy bar migration (on-offshore directions)
- Undertow due to storm waves (offshore)
- Orbital motion of small waves (onshore)
- · Overwash and overtopping

Figure. Near-bed orbital velocities for a wave (height H=1.0 m and period T=8 s) at four water depths. The positive sign denotes onshore direction

Cross-shore Sediment Transport due to Wave Asymmetry and Nonlinearity

Cross-Shore Transport Rate due to Velocity Skewness

 $\phi = \frac{\alpha_D}{1-p}(Q_V + Q_C + Q_D) \qquad \alpha_D = \text{empirical parameters (=1~2), } p = \text{porosity of sediment}$

 Q_v and Q_c are the net sediment transport due to waves and currents (Bailaid & Inman 1981, Hsu et al. 2006)

$$Q_{V} = \frac{C_{W}}{(s-1)g} \left(\frac{\varepsilon_{B}}{\tan \varphi} < \left|\vec{U}_{0}\right|^{2} U_{0,x} > + \frac{\varepsilon_{S}}{W_{0}} < \left|\vec{U}_{0}\right|^{3} U_{0,x} > \right)$$

$$Q_{C} = \frac{C_{C}}{(s-1)g} \left(\frac{\varepsilon_{B}}{\tan \varphi} < \left|\vec{U}_{t}\right|^{2} U_{x} > + \frac{\varepsilon_{S}}{W_{0}} < \left|\vec{U}_{t}\right|^{3} U_{x} > \right)$$
Energy Dissipation Wave Skewness

 U_0 = wave orbital velocity vector, U_t = the total velocity vector (waves plus currents), and U = current velocity vector, related to longshore current and undertow current.

 φ = friction angle W_0 = sediment fall velocity

 C_w , C_C , ε_B , ε_S = empirical parameters obtained by Fernández-Mora et al. (2015)

 Q_D represents a diffusive transport due to downslope move of sand:

 $Q_{D} = \frac{\lambda_{d} v \tan \beta}{\tan \varphi (\tan \varphi - \tan \beta)} \qquad \lambda_{D}, v = \text{empirical parameters}$

BUILDING STRONG_®

Calculation of Near-Bed Horizontal Orbital Velocity: An Asymmetrical Wave Shape Model

• Abreu et al. (2010) introduced a simple analytical expression for the free-stream near-bed horizontal orbital motion

$$\tilde{U}_0(t) = U_w f \frac{\sin(\omega t) + \frac{r \sin \varphi_w}{1 + \sqrt{1 - r^2}}}{1 - r \cos(\omega t + \varphi_w)}$$

r = nonlinearity measure calculated by Skewness and Asymmetry parameters (Ruessink et al. 2012)

 $f = \sqrt{1 - r^2}$

Combination of mean current and orbital velocity

 $\vec{U}_0(t) = (U_{undertow} + \tilde{U}_0(t)\cos\theta)\vec{i} + (U_{alongshore} + \tilde{U}_0(t)\cos\theta)\vec{j}$

i: cross-shore direction, *j*=alongshore direction

 $U_{undertow}$ = undertow current in cross-shore direction $U_{alongshore}$ =mean current alongshore

Shoreline Recession due to Sea Level Rise: Bruun Model (1962, 1988)

New Features of GenCade for Shoreline Evolution Model with Cross-Shore Transport and SLR

Shoreline Change Equation with Sea Level Rise (SLR)

$$\frac{\partial y}{\partial t} + \frac{1}{D_s} \left(\frac{\partial Q}{\partial x} - q - \phi \right) + \frac{R + S}{\tan \beta} = 0$$

 ϕ : Cross-shore sediment transport rate

- *R* : Sea Level Change Rate
- *s* : Subsidence Rate
- $tan\beta$: beach slope

 $D_s = d_c + d_b(t)$: Total closure depth

• Berm height varies with sea level change

 $d_b(t) = d_{b0} - (R+S)t$

Model Validation: Shoreline Changes (1999-2005) at FRF, Duck, NC

Model Parameters

<i>d_c</i> (m)	<i>d_b</i> (m)	<i>d₅₀</i> (mm)	R+S (mm/yr)	K ₁	<i>K</i> ₂	∆t (min)	Δx (m)
7.0	1.0	0.2	4.55	0.40	0.25	3.0	20.0

Wave: Senso-Metric 8m Array Boundary Conditions: Pined Permeability of Pier = 0.6 (no diffracting): Parameters for Cross-Shore Transport Scaling parameter α_D = 1.50 $C_w, C_C, \varepsilon_B, \varepsilon_S$ by Fernández-Mora et al. (2015)

Determining Shoreline Positions from FRF Survey Data of Beach Profiles

Representative beach profile coverage area along the FRF property. CRAB =Coastal Research Amphibious Buggy LARC=Lighter Amphibious Resupply Cargo

- Beach profile locations dating back to 1985 illustrating the cross-shore and temporal coverage
- 14 Survey groups (total 965 data surveys) based on projects

Wave Data (2000/1/1 - 2006/1/1)

The wave measurements at the 8-m array during the six year study period (1999-2005) include a blend of low-energy periods and energetic storm conditions

	H (m)	T (s)	alfa (deg)	
Average	0.82	9.18	-5.06	
Min	0.14	3.09	-74.62	
Max	5.28	18.96	111.32	
σ	0.53	2.68	18.52	

Sea Level Rise Trend NOAA-NOS #8651370 Duck, North Carolina

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8651370

BUILDING STRONG_®

Model Validation: Comparison of Shoreline Evolution (1999-2005) at FRF, Duck, NC

Model Validation: Comparisons of Shoreline Positions (1999-2005)

BUILDING STRONG®

Model Validation: (w or w/o xshore) Comparisons of Shoreline Changes (1999-2005)

BUILDING STRONG_®

Predicted Cross-Shore Transport Rate (Φ) (1999-2005)

Annual Cross-Shore Transport Rate

(1) Annual Average Φ

(2) 6-year Average Φ

BUILDING STRONG®

Model Skill Assessment: Root-Mean-Square Errors at Observation Times (1999-2005)

BUILDING STRONG®

Modeling of Shoreline Change in Fenwick Island, DE

Objectives: (1) to validate the GenCade model by using shoreline survey data provided by NAP and DNREC, and (2) to evaluate shoreline erosion after beach fill completed in Sept. 2013.

Computational Parameters

Computational Period: 3.5 years 2013/09/13 0:00 - 2017/01/01 0:00 after the beach fill in Sept. 2013

Time step = 3 minutes Grain size = 0.30 mm Berm Height = 1.0 m Closure depth = 10.0m Smooth parameter = 1 (no smoothing) No regional contour Boundary Conditions: Moving (retreat 2.5 ft/year) Grid Size = 20 m Sea Level Rise rate: 4.50mm/year (based on tide gauges) Subsidence : included

Calibrated Model Parameters: K1 = 0.90K2 = 0.35

Cross-shore transport included Scaling parameter $\alpha_D = 0.16$ $C_w, C_C, \varepsilon_B, \varepsilon_S$ by Fernández-Mora et al. (2015)

History of Shoreline Positions in Fenwick Island, DE

Innovative solutions for a safer, better world

BUILDING STRONG®

Comparisons of Shoreline Positions on 09/13/2013 and 10/15/2016

Innovative solutions for a safer, better world

BUILDING STRONG®

Annual Longshore Sediment Transport Rate in Fenwick Island, DE

Annual Crossshore Sediment Transport Rate in Fenwick Island, DE

BUILDING STROI

better world

GenCade-Based Monte Carlo Simulation

Probabilistic Distribution of Wave Height

$$p(x) = \begin{cases} R(x) & x \in [0, x_0) \\ \varepsilon W(x) & x \in (x_0, +\infty) \end{cases}$$

ɛ: parameter

 x_0 : a truncated extreme value of wave height

Rayleigh Distribution (for normal waves) : $R(x) = -\frac{\pi}{2} x \exp\left(-\frac{\pi}{4} x^2\right)$

Weibull Distribution (for extreme waves):

$$W(x) = \frac{1}{k} \left(\frac{x-B}{A}\right)^{k-1} \exp\left(-\left(\frac{x-B}{A}\right)^{K}\right)$$

Parameters k, A, B, and x_0 are determined from wave observation data

$$c = \frac{e^{-\frac{\pi}{4}x_0^2}}{e^{-(\frac{x_0-B}{A})^K}}$$

Innovative solutions for a safer, better world

BUILDING STRONG_®

Determining Distribution Parameter from Wave Observation Data

Density distribution of wave height is fitted as mixing distribution of Rayleigh and Weibull distributions

 $p(x) = \begin{cases} R(x) & x \in [0, x_0) \\ \varepsilon W(x) & x \in (x_0, +\infty) \end{cases}$

where $x = H / H_{mean}$, in W(x), $k = 1.1, A = 0.5792, B = 2.0554, x_0 = 2.1$

Hmean = 1.19 m

Observation data: H=4.0 m wave height for one-year return period

Observation data at Naka Port, Japan, from 1980 to 1996

BUILDING STRONG_®

Probabilistic Shoreline Change Modeling in an Idealized Coast: Sensitivity Study

Two Test Cases:

Wave Direction and Period

Incident Wave Angles: Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

 σ : Standard deviation of wave direction

 μ : Mean value of direction

Significant Wave Period: based on Pierson-Moskowitz Spectrum

$$T_s = 5\sqrt{H_s}$$

BUILDING STRONG_®

Wave Parameters Generated by Wide Band Spectrum (Case 1: One Year, 256 Monte Carlo Experiments)

- Hmean = 1.19m
- Mean Angle = 0.0 with σ^2 =10
- Data Interval = 3.0 hours

 $p(x) = \begin{cases} R(x) & x \in [0, x_0) \\ \varepsilon W(x) & x \in (x_0, +\infty) \end{cases}$

H_cut = 2.5 m

Innovative solutions for a safer, better world

BUILDING STRONG_®

Comparison of Wave Heights by Two Wave Spectra

BUILDING STRONG®

Predictions of Mean Shoreline Changes after 10 Years with Confidence Interval

Estimation of Maximum Shoreline Erosion in the Future: Maximum Likelihood Estimation

Monte Carlo Simulation of Shoreline Change in Duck, NC

FRF in Duck, NC

Number of Monte Carlo = 128**Wave Conditions:** Wave Height: Rayleigh+Weibull **Direction: Gaussian Period: PM Spectrum Truncated Wave Height: 2.0 m Computational Period: 6 years** 1999/10/23 0:00 - 2005/10/23 0:00 time step = 3 minutes K1 = 0.40; K2 = 0.25Grain size = 0.20 mm Berm Height = 1.0 mClosure depth = 7.0Sea Level Rise Rate = 4.55 mm/year Smooth parameter = 1 (no smoothing) **Boundary Conditions: Pined** Grid Size = 20 mPermeability of Pier = 0.6 (no diffracting) Scaling parameter of cross-shore transport: 0.182

Innovative solutions for a safer, better world

BUILDING STRONG®

Wave Data (2000/1/1 - 2006/1/1)

Probability Density Functions: 6-Years Shoreline Change

17.5

18

Comparison of Mean Shoreline Position and Changes

(a) Shoreline Positions on 10/19/2005

(b) Shoreline Change on 10/19/2005

BUILDING STRONG_®

Uncertainty Estimation of Maximum Erosion at Point C

Pier

BU

Maximum Seaward-most and Landward-most Shoreline Positions

The filled area is a spatial range of shoreline variations (from maximum landward-most position to maximum seaward-most position) during the simulation period of 6 years.

BUILDING STRONG_®

Remarks

- GenCade's new capabilities (Cross-shore sediment transport, SLR effect) are important in simulating shoreline evolution. Nonlinearity of waves plays an important role in driving net cross-shore transport in nearshore zone.
- Inclusion of cross-shore sediment significantly reduced model error (uncertainty)
- GenCade-based Monte-Carlo simulation provides a useful approach to assess uncertainty of shoreline change driven by waves.
- Estimation of extreme shoreline changes provides risk of erosion in a return-interval manner, which is useful for risk/uncertainty-based coast design
- Further investigation of uncertainties by other factors (model parameters, boundary conditions, etc) is needed.

References

- Abreu, T., Silva, P.A., Sancho, F. and Temperville, A., (2010). Analytical approximate wave form for asymmetric waves. Coastal Engineering, 57(7), pp. 656-667
- Bruun, P., (1962). Sea-level rise as a cause of shore erosion. J. Waterway. Harbours Div. 88: 117–130.
- Birkemeier, W. A. and Thornton, E. B., (1994), The DUCK94 Nearshore Field Experiment, Proceedings of the Conference on Coastal Dynamics '94, 815-821.
- Fernández-Mora, A., Calvete, D., Falqués, A., and de Swart, H. E., (2015). Onshore sandbar migration in the surf zone: New insights into the wave-induced sediment transport mechanisms. Geo. Phys. Res. Ltrs., 10.1002/2014GL063004, 2869-2877.
- FRF (2019). FRF 8m Linear Array Directional Waves, <u>http://www.frf.usace.army.mil/dksrv/dk94/frf/FRF8m.html</u>, accessed on Jan. 22, 2019.
- Rosati, J.D., Dean, R.G., and Walton, T.L. (2013). The modified Bruun rule extended for landward transport, Mar. Geol. 340, 71-81.
- Ruessink, B. G., Ramaekers, G., and van Rijn, L. C., (2012). On the parameterization of the freestream non-linear wave orbital motion in nearshore morphodynamic models. Coastal Engineering, 65(7), pp. 56-63.
- Thornton, E., Humiston, R., Birkemeier, W., (1996). Bar-trough generation on a natural beach. J. Geophys. Res 101, 12097–12110.

Recent Publications on GenCade

- Frey, A. E., Connell, K. J., Hanson, H., Larson, M., Thomas, R. C., Munger, S., Zundel, A., (2012) GenCade version 1 Model theory and user's guide. US Army, Engineer Research and Development Center, ERDC/CHL TR-12-25, 169 pp.
- Ding, Yan, Kim, Sung-Chan, and Frey, Ashley, (2018). Probabilistic Shoreline Evolution Modeling in Response to Sea Level Changes, In Proceedings of the ASCE-EWRI 2018 Congress, June 3-7, 2018, Minneapolis, NM, 13p. (<u>https://doi.org/10.1061/9780784481424.021</u>)
- Ding, Y., Kim, S.-C., Frey, A.E., Permenter, R. L., and Styles, R. (2018). Probabilistic modeling of long-term shoreline changes in response to sea level rise and waves, In: Scour and Erosion IX: Proceedings of the 9th International Conference on Scour and Erosion, K.-C. Yeh Ed., pp203-211, Taylor & Francis Group, London, ISBN 978-0-367-07467-8
- Ding, Y., R. Styles, S.C. Kim, R. Permenter and A. Frey, (2019). Cross-shore transport feature for GenCade. ERDC/CHL CHETN-IV-??. Vicksburg, MS: US Army Engineer Research and Development Center (under review).
- Ding, Y., Kim, S.-C., Permenter, R.L., Styles, R., and Beck, T.M. (2019). Cross-shore sediment transport for modeling long-term shoreline changes in response to waves and sea level changes, In: Proceedings of Coastal Sediment 2019.
- 3Kimberly Townsend, Robert Thomas, Ashley Frey, David King, Julie Rosati, Sung-Chan Kim, Richard Styles, Yan Ding, and Rusty Permenter, 2018. Comparison of GenCade, Pelnard-Considere, and LITPACK. ERDC/CHL CHETN-IV-??. Vicksburg, MS: US Army Engineer Research and Development Center. (Under Review)

Thank you for your attention!

Yan Ding, Ph.D. Yan.Ding@usace.army.mil

http://cirp.usace.army.mil/products/gencade.php http://cirp.usace.army.mil/pubs/

BUILDING STRONG_®