COASTAL MODEL TEST BED EVALUATION OF CSHORE HYDRODYNAMIC PREDICTION PERFORMANCE

D.L. Young, A.S. Bak, B.D. Johnson, N. Cohn USACE-ERDC-CHL

COASTAL MODEL TEST BED OVERVIEW

- Automated evaluation of coastal numerical models.
 - Use ERDC CHL FRF data.
- Assess/quantify model uncertainty.
- Test model parameterizations under range of conditions.
- Targeted model development cycle.
- Test/develop data assimilation techniques.

IYDRAULICS

US Army Co

BUILDING STRONG

2

CSHORE HYDRODYNAMIC PREDICTION PERFORMANCE

- 15 month evaluation period at CHL FRF.
 - October 1st 2015 January 1st 2017.
- Wide range of offshore waves/water level.
- Focusing on model skill at simulating:
 - Wave transformation across surf zone.
 - Alongshore/cross-shore currents.
 - Runup.

Storm at CHL FRF

Wave runup on Maui, HI ©Lahaina News

BUILDING STRONG®

COASTAL & HYDRAULICS LABORATORY

CSHORE OVERVIEW

- Phase-averaged time-steady 1D cross-shore numerical model.
- Predicts nearshore hydrodynamics and morphology evolution.
- Includes effects of:
 - Irregular breaking waves.
 - Wave roller contributions.
 - Quadratic bottom shear stress.
- See Johnson et al. 2012 for details.

Variable Name	Description	Units
H_s	H_s Significant wave height at the model boundary for each time step.	
T_m	Wave mean period at the model boundary for each time step.	S
θ	Wave angle at the model boundary for each time step (see Figure 1)*	decimal °
MWL	Mean water level at the model boundary for each time step.	m (NAVD88)
Z _b	Initial bed elevation at each node in the model domain.	m (NAVD88)
Salinity	Single value of water salinity (for entire model duration).	PSU
Temp	Single value of water temperature (for entire model duration).	°C

*Measured counter-clockwise positive in model coordinates system.

BUILDING STRONG

FORCING AND COMPARISON DATA

Forcing

- Water level from NOAA WL gauge.
- 8m Array for offshore waves
- No wind.

Comparison gauges

- 6m AWAC H_s, U, V
- 4.5m AWAC H_s, U, V
- 3.5m Aquadopp H_s, U, V
- Paros (200, 150, 125, 100m) – H_s
- lidar Runup ($R_{2\%}$)

Modeled Profile

Yellow line

BUILDING STRONG

5

BATHYMETRY

- Bathymetry from integrated bathymetry product. (Plant et al. 2003, 2009)
 - Gridded, smoothed (Lx = 20m, • Ly=100m), splined to background.

Surveys in progress

MODEL SETUP

- Fixed bed configuration.
- Mobile bed implemented, not analyzed.
- Bathymetry updated 20 times.

CSHORE model settings

Toggle	Description	Setting
γ	Depth limited wave breaker coefficient.	0.8
friction factor	Bed friction factor.	0.007
roller	Toggle roller model on/off.	on
Predicted runup	Swash depth tracked for runup calculations.	1 cm

COASTAL & HYDRAULICS

US Army Cor of Engineers

BUILDING STRONG

CROSS-SHORE WAVE TRANSFORMATION

- Underpredicts wave heights offshore (AWACs, Aquadopp)
- Overpredicts wave heights in surf zone (Paros)
- RMSE high offshore, drops at most offshore Paros.

CROSS-SHORE CURRENT

- 1D model offshore only.
- Data shows onshore and offshore.
- No winds, longshore uniformity violations.
- 4.5m AWAC installed mid-Nov. 2016.

COASTAL & HYDRAULICS LABORATORY

US Army Corp

BUILDING STRONG®

9

ALONGSHORE CURRENT

- Driven by radiation stress gradients.
- Direction depends on incident wave angle.
- Periods of general agreement.
- Not including surface stress or pressure-driven flow.

COASTAL & HYDRAULICS LABORATORY

US Army Corp of Engineers

BUILDING STRONG

CURRENT COMPARISON STATS

Variable	Gauge	Bias	RMSE	Number of points
U (cm/s)	6m AWAC	0.2	3.8	5312
	4.5m AWAC	0.3	2.9	469
-	3.5m Aquadopp	-0.8	5.7	5025
V (cm/s)	6m AWAC	9.8	26.0	5312
-	4.5m AWAC	9.0	23.3	469
-	3.5m Aquadopp	4.5	21.2	4677
$R_{2\%}$ (cm)	lidar	15.9	33.5	7982

BUILDING STRONG_®

ľні

COASTAL & HYDRAULICS LABORATORY US Army Corps of Engineers.

LIDAR RUNUP

- Not all data manually QA/QC'ed
- Applied filter based on observation/model ratio.
- Model and observations generally in good agreement.

Variable	Gauge	Bias	RMSE	Number of points
$R_{2\%}$ (cm)	lidar	15.9	33.5	7982

COASTAL & HYDRAULICS LABORATORY

US Army Corp of Engineers.

12

BUILDING STRONG®

CONCLUSIONS

- Model
 - Underpedicts H_s in offshore region.
 - Overpredicts H_s in surf zone.
 - Only predicts offshore-directed cross-shore current.
 - Alongshore current direction generally agrees with observations.
 - Has good agreement with observed R_{2%}

FUTURE WORK

CSHORE

- Model/data discrepancies.
- Impact of wind.
- Morphology evaluation.
- Refining integrated bathymetry product:
 - Include hourly beach topography
 - Taper large cross-shore movement in sandbar position.
- New Models:
 - CMS-Flow, Coupled CMS-Wave/Flow, ADCIRC, XBEACH, C2SHORE.
- Evaluation of optical current measurements (OCM).

Wave impact damage Kitty Hawk, NC

QUESTIONS?