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Long-Term Shoreline Changes

Prediction of long-term shoreline changes is a
key task in coastal management practice.

Multiple physical processes drive shoreline
changes: wave, wind, tide, storm, current, sea
level change/subsidence, sediment
properties, longshore/cross-shore sediment
transport, human activities (structure
installation, beach refill, beach recreation),etc.

Shoreline changes induced by natural physical
processes in general are highly irregular.

Probabilistic shoreline change prediction is
needed for best shoreline management practice
for long-term protection purpose.

Uncertainty estimation of shoreline changes
is required for best shoreline erosion control
management.
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Shoreline Change due to Coastal
Management Practices

G ~x

= Construction or modification
of inlets for navigational
purpose

= Construction of harbors with
breakwaters built in
nearshore regions

= Beachfills (sand nourishment)
= Sand Bypass

= Sand Mining

= Dredging Material Disposals

Fig. Sand Bypass in Indian Rive .Jnlef,- DE e
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Outline

Importance of Long-Term Shoreline
Modeling for Coastal Management
Practices

GenCade: USACE Shoreline Evolution
Simulation Model

Cross-Shore Sediment Transport in
Shoreline Change Simulation

Shoreline Retreat due to Sea Level Rise

Validation of GenCade’s Cross-Shore
Transport Modeling Capability:

» CHL Field Research Facility (FRF) in Duck, NC
» Fenwick Island, DE with inclusion of Beachfills

Conclusions
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GenCade:
USACE Shoreline Evolutlon Slmulatlon Model

GenCade: A one-dimensional shoreline
change model driven by longshore
sediment transport, including modules
for inlet-sand sharing, beach
nourishment, structure effect, etc.

Combines the engineering power of ssemuaoras
GENESIS with the regional processes &
capability of the Cascade model.

Development began in 2009, GenCade
Version 1 in SMS Ver. 11.1 was released
in 2012 (Frey et al. 2012)

Applications in US and other
international coasts.

Top: Onslow Bay, NC (for SAW)
Bottom: Galveston, TX (Galv. Park Board)
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Longshore Sediment Transport
- Energy Flux Method (CERC formula)

. H
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Cross-Shore Sediment Transport vs Nearshore
Wave Asymmetry and Nonlinearity

Beach Bar Zone Upper Shoreface

Contributors to Cross-Shore Transport:
A T — « Sandy bar migration (on-offshore directions)

F
\‘i* Inner ter « Undertow due to storm waves (offshore)
\ Transitional . .
\*.\\* ¢ » Orbital motion of small waves (onshore)

I S « Overwash and overtopping

L ]

Wave: H=1.0m, T=8s [——h=0.5m
——h=0.8m
L] ——h=2.0m

U(tyu
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vT
Figure. Near-bed orbital velocities for a wave (height F=1.0 m and period
7=8 s) at four water depths. The positive sign denotes onshore direction

North
Carolina
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Cross-shore Sediment Transport due to Wave
Asymmetry and Nonlinearity

Cross-Shore Transport Rate due to Velocity Skewness

a
¢ = l—Dp (QV + QC iy QD) ap=empirical parameters (=1~2), p=porosity of sediment

Q, and Q. are the net sediment transport due to waves and currents (Bailaid & Inman
1981, Hsu et al. 2006)

C

L U L > + 1P
QV (S l)g tan @ 0.x )
.= Ce U >+55 < U‘_ )
(s—Dg tan(p W, '

Energy Dissipation Wave Skewness

U, = wave orbital velocity vector, @ = friction angle
U, = the total velocity vector (waves plus currents), and W, = sediment fall velocity
U = current velocity vector, related to longshore current  C, = C., ¢z, £5 = empirical parameters obtained by

and undertow current. Fernandez-Mora et al. (2015)
Qp represents a diffusive transport due to downslope move of sand:
A vtan
O, = a p Ap, v=empirical parameters

tan ¢(tan ¢ —tan )
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Calculation of Near-Bed Horizontal Orbital
Velocity: An Asymmetrical Wave Shape Model

* Abreu et al. (2010) introduced a simple analytical
expression for the free-stream near-bed horizontal orbital
motion

sin(ot) + _rsing,
= f 2

1—-rcos(wt+¢,)

r = nonlinearity measure calculated by Skewness and
Asymmetry parameters (Ruessink et al. 2012)

f =+1-7"

Combination of mean current and orbital velocity

U, () =(U,

undertow

+U,(t)cos )i +(U.,

ongshore

+ [}0 (f)cosO) j
I: cross-shore direction, j=alongshore direction

Urmde}'.fou' = undertow current in cross-shore direction

Uafongshore =mean current alongshore
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Shoreline Recession due to Sea Level
Rise: Bruun Model (1962 1988)

Shoreline Retreat rate

SW.
h.+ B

(Generalized Bruun Rule

R =

S: Sea level rise rate
= sediment closure depth
B = Berm Height

dune
erosion

Standard Bruun Rule

profile closure
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Projected Global Mean Sea Level Change

— IPCC Representative Concentration Pathways (RCP) scenarios

Approximate

Radiative o Median value i
forcina in carbon dioxide and likel Median value
Scenari 9 (CO ,)- y and likely
year 2100 : range of
o : equivalent range of sea-
LB concentration LTS level rise (m)
1750 (W/m 2) change (°C)
(ppm)
RCP2.6 2.6 475 1.0 [0.3-1.7] 0.40 [0.26-0.55]
RCP4.5 4.5 630 1.8 [1.1-2.6] 0.47 [0.32-0.63]
RCP6.0 6.0 800 2.2 [1.4-3.1] 0.48 [0.33-0.63]
RCP8.5 8.5 1,313 3.7 [2.6-4.8] 0.63 [0.45-0.82]

Projected global surface warming and sea-level rise for the late twenty-first century
(2081-2100) relative to the reference period of 1986—2005 by the IPCC ARS (IPCC
2013)
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Meters

Sea Level Rise Trend
NOAA-NOS #8651370 Duck, North Carolina

8651370 Duck, North Carolina 455 +/=- 0.71 mm/yr
0.60 ,
— Linear Relative Sea Level Trend @\
0.45 |- | Upper 95% Confidence Interval | V_
— Lower 95% Confidence Interval -—
___Monthly mean sea level with the
0.30 |- average seasonal cycleremoved - — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
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A relative current SLR in DUCK, NC, 4.55 +/- 0.71 mml/yr , includes mean water level rise and subsidence,

which is close to the case of RCP4.5, 4.7+/- 0.31 mm/yr.
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8651370
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GenCade:
USACE Shoreline Evolution Simulation Model

foLe Iz

S G Dapm et Cnes Wb Ve o

A one-dimensional shoreline change
model driven by longshore sediment
transport, including modules for inlet-
sand sharing, beach nourishment,
structure effect, etc.

Combines the engineering power of
GENESIS with the regional processes
capability of the Cascade model.

Development began in 2009,
GenCade Version 1 in SMS Ver. 11.1
was released in 2012.

Applications in US and other
international coasts. Top: Onslow Bay, NC (for SAW)

Bottom: Galveston, TX (Galv. Park Board)

BUILDING STRONGg Innovative solutions for a safer, better world




New Features of GenCade for Shoreline Evolution

Model with Cross-Shore Transport and SLR

= Shoreline Change Equation with Sea Level Rise (SLR)

_|_
o D \ ox

s N

1 (0
2 [ 0_,_ ¢]+
¢ : Cross-shore sediment transport rate

R  :Sea Level Change Rate
S : Subsidence Rate
tanfi  : beach slope

Dy =d_+d, (1) :Total closure depth

* Berm height varies with sea level change

dy(t) =dy, —(R+5)t

R+S

=0

(9, +'AQ})A.'

Water

= Level

Datum
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Model Validation:

Shoreline Changes (1999-2005) at FRF, Duck, NC
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Parameters for Cross-Shore Transport
Scaling parameter ap= 1.50
&g, €5 by Fernandez-Mora et al. (2015)

CW} CC;

Carolina

Survey Transect

Ingj
-+

dent waye

ol

N

Innovative solutions for a safer, better world




Determining Shoreline Positions from FRF
Survey Data of Beach Profiles
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Wave Data (2000/1/1 — 2006/1/1)

The wave measurements at the 8-m array during the six year study period (1999-
2005) include a blend of low-energy periods and energetic storm conditions

Wave Height

Wave Height
H (m) T (s) alfa (deg) z

Average 0.82 9.18 -5.06 £,

Min 0.14 3.09 -74.62 &

Max 5.28 18.96 111.32 g 2

o 0.53 2.68 18.52 )
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T
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Shoreline Position ( y (m)

Shoreline Position ( y (m)

Comparison of Shorelines on 10/27/1999

Model Validation:
Comparisons of Shoreline Positions (1999-2005)
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Comparison of Shorelines on 06/28/2005
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Shoreline Changes (Ay (m) )

Shoreline Changes (Ay (m) )

Model Validation: (w or w/o xshore)
Comparisons of Shoreline Changes (1999-2005)
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Cross-shore Transport Rate (m3f(meyear))
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Cross-shore Transport Rate (m3f(meyear))
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Model Skill Assessment:
Root-Mean-Square Errors at Observation Times (1999-2005)

R&?t-Mean-Sguare Error (RMSE) at each observation
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Model Validation (Impact of SLR)

Comparisons of Shoreline Changes (1999-2005)

Comparison of Shoreline Changes on 10/27/1999
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Objectives: (1) to validate the GenCade
model by using shoreline survey data

provided by NAP and DNREC, and (2) to
evaluate shoreline erosion after beach fill
completed in Sept. 2013.

Modeling of Shoreline Change in Fenwick
Island, DE with Beachfill Event

.........

........

A Fenwick Island, DE

Oeasn Ciy

Computational Parameters

Computational Period: 3.5 years
2013/07/13 0:00 - 2017/01/01 0:00
starting before the beach fill in Sept. 2013

Beachfill=356,000yd? Jul-Sept, 2013

Time step = 3 minutes

Grain size = 0.30 mm

Berm Height=1.0 m

Closure depth = 10.0m

Smooth parameter = 1 (no smoothing)
No regional contour

Boundary Conditions: Moving (retreat 2.5
ft/year)

Grid Size =20 m

Sea Level Rise rate: 4.50mm/year (based on
tide gauges)

Subsidence : included

Calibrated Model Parameters:
K1 =0.90
K2 =0.35

Cross-shore transport included
Scaling parameter ap,= 0.16
Cw Cc, &g, €5 by Fernandez-Mora et al. (2015)
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History of Shoreline Positions Iin
Fenwick Island, DE

History of Sh

Beachfill=356,000yd?
Jul-Sept, 2013

450 F at x=2338 (m)

400
E °
=
=2 L]
2
o 350
[
1=
e
[=]
F =1
w

300

Simulation
&  Observation |
250 - - : .
2013-Jan 2014-Jan 2015-Jan 2016-Jan 2017-Jan

Shoreline Position (m)

450

400

350

300

250
2013-Jan

Beachfill

f

- .?ijistory of Shoreline Positions at x=2635 (m)

[ ]
L]
1
Simulation
&  Observation |
2014-Jan 2015-Jan 2016-Jan

Beachfill
_.:<"
450 . History of Sh F at x=3546 (m)
400
® E
= [
8
2 N
o 350 ©
@
=
g
P~
o
300
| Simulation |
[ ® observation]
250 - - -
2017-Jan 2013-Jan 2014-Jan 2015-Jan 2016-Jan

2017-Jan

BUILDING STRONGg

Innovative solutions for a safer, better world




Comparisons of Shoreline Positions
on 09/13/2013 and 10/15/2016

Profiles of Shoreline Positions on 13-Sep-2013
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Annual Longshore Sediment Transport Rate in
Fenwick Island, DE
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Annual Crossshore Sediment Transport Rate in
Fenwick Island, DE
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Conclusion

One-line shoreline evolution model such like GenCade is an engineering
application tool with a unique capability for making long-term prediction
of shoreline changes in spatio-temporally varying conditions of waves
and beach morphology. Inclusion of long-term signal driving net
sediment transport alongshore and cross-shore is critical to improve one-
long model predictability.

GenCade’s new capabilities (Cross-shore sediment transport and SLR
effect) are important in simulating shoreline evolution. Nonlinearity of
wave dynamics plays an important role in estimating net cross-shore
sediment transport.

The values of empirical parameters (C,,, C., &5, and &g ) which were
calibrated in Duck coast, NC, by Fernandez-Mora et aI (2015) are
appropriate for another Atlantic coast (e.g. the Fenwick Island coast in
DE). Parametric cross-shore transport model is capable of estimating
cross-shore transport rate in different coasts. So this parametric model is
not site-specific.

Further investigation of uncertainties by other factors (model parameters,
boundary conditions, etc) is needed. As an ongoing research, we are
developing a GenCade-Based Monte-Carlo simulation model for
estimating shoreline changes probability and uncertainty.
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Thank you for your attention!

Yan Ding, Ph.D. Yan.Ding@usace.army.mil

http://cirp.usace.army.mil/products/gencade.php

http://cirp.usace.army.mil/pubs/
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