ERDC **Engineer Research and Development Center**

Sediment Mobility Tool

U.S. Army Engineer Research & Development Center Coastal & Hydraulics Laboratory

Brian C. McFall, Brian.C.McFall@usace.army.mil Katherine E. Brutsché, Katherine.E.Brutsche@usace.army.mil

Overview

- Sediment Mobility Tool Predicts:
 - Frequency of sediment mobilization at nearshore placement site
 - Cross-shore sediment migration direction
 - Axis of wave dominated sediment transport
- Currently being developed into a webtool including the Depth of Closure

Wave Characteristics

Tool is applied below to Duck, NC using WIS wave hindcasts

Waves & Depth of Closure

• Wave characteristics are from waves transformed to the nearshore from closest WIS station

• The Depth of Closure (DOC) is calculated using equations from Hallermeier (1981) and Birkemeier (1985)

	(1980 – 2012)		
	Hmo (m)	0.68	
	He (m)	3.94	
	H _{0.1} (m)	1.24	
	Stand. Dev. σ	0.47	
	T p (S)	8.7	
	Te (S)	14.5	
/	[WIS Station 63218, 160° Shoreline		
	Angle, Nearshore Place	ment Depth: 8 m	

Depth of Closure (1980 - 2012)

Hallermeier Inner (m)	8.5
Hallermeier Inner Simplified (m)	6.6
Hallermeier Outer (m)	13.3
Birkemeier (m)	6.5
Birkemeier Simplified (m)	6.2

[WIS Station 63218, 160° Shoreline Angle, Nearshore Placement Depth: 8 m]

Stream Function Wave Theory

l (mm)

Freq. of Sediment Mobility Calculated with Linear

and Stream Function Wave Theories •Using both methods provides a range of sediment mobilization frequency Stream function wave theory is more appropriate closer to shore when the wave becomes more asymmetric Applied to several grain SIZES

Migration Direction

•Cross-shore migration predicted with Dean Number: $D = H_0/\omega T$ where H_o is deep water wave height, ω is sediment fall speed, and T is wave period

D > 7.2, Offshore migration

D < 7.2, Onshore migration (Larson & Kraus, 1992) •Wave rose provides axis of wave dominated sediment transport

	Migration		
0.1	75% Offshore		
0.2	92% Onshore		
0.26	97% Onshore		
0.3	99% Onshore		
0.4	99% Onshore		
0.5	100% Onshore		
[WIS Station 63218, 160° Shoreline Angle, Nearshore Placement Depth: 8 m]			

Predicted Sediment

Note: All units on this poster are metric. The webtool being developed will allow the user to use English or metric units.