

Physical processes

The Coastal Modeling System (CMS) consists of two independent but couplable modules (CMS-Flow and CMS-Wave) that enable large-scale numerical modeling of hydro- and morphodynamics in coastal, inlet, and estuarine environments. Sediment transport can be computed using C2SHORE, among other available formulations, extending its validity from current-dominant environments to wave-dominant environments as well. A variety of features are available in SMS to aid in modeling structural and non-structural alternatives for sediment management and flood risk management engineering projects, including:

- ✓ EWN Toolkit
- ✓ Sediment Volume Management
- ✓ Breakwaters and jetties
- ✓ Sediment layering and mapping

Table 1. Coastal Modeling System (CMS) capabilities and limitations			
Capability	Intended application	Not available	
Flow	WSE and depth-averaged currents		
Waves	Nearshore, phase-averaged	Offshore (deep water); phase-resolving	
Sediment transport	Sand, multiple grain sizes; dunes via coupling with Aeolis	Fine grains (silt, mud)	
Vegetation	Wave, flow drag	Sediment dynamics (under development)	
Salinity, temperature	Scalar concentration advection and diffusion	Multi-phase flow; salt wedge dynamics	
Speed	Desktop-friendly (hrs-days)	HPC	
Grid cell size	Regional to macro (km-m)	Fine scale (cm-mm)	
Numerics	Structured, non-uniform (quadtree); implicit and explicit in time	Unstructured (triangular)	

Case study – Fire Island Inlet

In collaboration with the New York District, the CMS team (led by Lihwa Lin), developed a coupled CMS-Flow and Wave model of Fire Island Inlet to assess flood risk reduction and sediment management. The model was calibrated and validated using observed waves, wind, water levels, lidar surveys, and bathymetric surveys.

The sediment transport capability of CMS (C2SHORE) was validated by replicating the morphodynamic response of the inlet during Tropical Storms (Irene and Sandy) and annual conditions (April 2019-March 2020). The validated model was used to evaluate various borrow-fill alternatives to support renourishment of Robert Moses State Park and Gilgo Beach.

Figure 1b. Modeled bed elevation changes using CMS & C2SHORE

COASTAL &

HYDRAULICS

LABORATORY

Coastal Modeling System (CMS) and C2SHORE Recent Advancements and Technology Transfer

PIs: Mitchell Brown & Elizabeth Holzenthal Team Members: Lihwa Lin, Honghai Li, Bradley Johnson, Dylan Robinson, Yan Ding, Nick Cohn

Are you a CMS user or want to learn more?

A

Scan the QR code to complete a brief survey to help our team learn about your needs!

(A)

Wave and mean flow attenuation by vegetation

Recent R&D efforts to better capture flowvegetation interactions in CMS and CSHORE, led by Yan Ding, have focused on computing wave and mean flow drag forces over vegetation stems. As shown in the schematic (Fig. 2), a new formulation parameterized with species-specific bio-mechanical properties improves the calculation of wave attenuation and current velocity reduction by flexible vegetation stems. The model leverages a novel relationship between the drag coefficient and the Reynolds number, which is applicable for a wide range of species (see Fig. 3).

cms2d.readthedocs.io GitHub github.com/erdc/cms2d Now open source!

Wind-driven dune morphodynamics using Aeolis

Although waves and currents are the predominant driver of coastal change, sediment transport driven directly by wind plays a relevant role in landform evolution near the shoreline in sandy coastal environments. Sediment sourced from the intertidal zone or dry beach can be blown by wind into adjacent dune systems or waterways, including into inlets, marinas, or the ocean This wind-driven contribution can increase dredging needs to meet navigational USACE requirements. Recognizing the importance of winddriven sediment contributions to the littoral dynamics near inlets and other coastal settings, R&D has been focused on (1) advancing capabilities to simulate windblown sediment transport in managed coastal systems using the Aeolis model (Hoonhout and de Vries, 2016) and (2) directly coupling the CMS suite with Aeolis to co-simulate nearshore-beach-dune evolution (Fig. 5).

D)

Improved phase-averaged wave runup statistics

Accurately modeling wave runup is required to predict the leading edge of inundation, but is difficult to do in a rapid, generalized manner without high computational expense. A novel time-averaged swash solution has been implemented into CMS to fill this gap. The new CMS model routines were tested against commonly used algebraic and numerical models in predicting runup statistics ($R_{2\%}$) observed at the CHL Field Research Facility (FRF) during the 2015 nor'easter season. The CMS model had the lowest root mean square error (RMSE) and was 3-10 times faster than the more advanced numerical models tested (Table 2).

Advancing sediment transport by nonlinear waves

Conventional phase-averaged wave models are incapable of computing nonlinear wave velocities in the surf zone and are therefore wholly-dependent on site-specific empirical parameters to predict the magnitude and direction of wave-driven sediment fluxes. A new model component is in development that includes the details of phase-dependent sand entrainment and transport by generating a skewed and asymmetric synthetic fluid velocity time series that is consistent with the phase-averaged balances. Examples of predicted and measured bedload and suspended load from a laboratory study are provided in Fig. 8. Detailed process-based transport predictions can be numerically accumulated and readily included in phase-averaged models.

Figure 2. New method of vegetation-induced drag; see Ding et al., ERDC/CHL TR-22-2 for more

> Figure 3. From Zhu, et al. (2022). Coastal Engineering. (a) Range of vegetation types used to validate new unified model for drag coefficient (C_d). (b) Comparison of observed and predicted wave attenuation using new unified C_d model, where $\gamma = 1 - H_{rms}/H_{rms0}$

Figure 4. Deposition patterns due to sediment trapping by sand fences simulated by Aeolis at an inlet-adjacent site

Figure 5. Example coupled CMS – Aeolis bed elevation cnange output for Duck, NC

Figure 7. CMS domain

Table 2. Runup model error and speed

	Runtime	RMSE (m)
ockdon, et al. (2006)	0.18 s	1.01
HORE	25.0 s	0.55
/IS	10 hr	0.29
each-Surfbeat	35.5 hr	0.53
each-NH	124.4 hr	0.45

