Ongoing CMS work in the Coastal Model Test Bed

Spicer Bak, David Young, Zeki Demirbilek, Lihwa Lin, Honghai Li, Mitch Brown

USACE CHL

Motivation

Automated evaluation of coastal numerical models in near realtime utilizing ERDC CHL Field Research Facility data to:

- Assess and quantify model uncertainty
- Assess model parameterizations in range of conditions
- Targeted model development cycle
- provide framework to develop data assimilation techniques

3.0

<u>٤</u> 2.0

H_{smodel}

Bias = -0.04 m

Innovative solutions for a safer, better world

UNCLASSIFIED

3.0

또 2.5 위 2.0 observation

model

FRF Data

- 1 year continuous altimeter seafloor elevation data
- •150, 200, 300 m (red circles)

2 years continuous lidar:

Elevation (m, NAVD88) 20170619-1200-01 UTC

• beach topography, wave runup, inner-surf waves

Virginia

30 years of wave

FRF XShore Wave and Current Array in operation since July 2008

- Directional waves and currents in 26, 17, 11, 8, 6, 4.5, & 3.5 m depth
- Non-directional waves at 100, 125, 150, 200 m cross-shore

• 8 m pressure gauge array

30+ years of monthly bathymetric surveys

30 years of Argus video imagery

- Wave runup
- surface currents
- bathymetry inversion
- Sandbar placement

SCRIPPS INSTITUTE OF OCEANOGRAPHY: DATA SET **EXPANSIONS** 2.5 (b) 12 June 2014 15 January 2013

Goal: Provide curated data observational datasets to test existing models for the evolution of sandy beach profiles.

- Start with relatively simple 1D cases (cross-shore, rather than alongshore, transport is the dominant process).
- Models can be physically based or • empirical/statistical.

Current Status:

Working to create database: Cardiff, Solana, Torrey Pines, Imperial Beach

Future Goals:

- Get CSHORE model setup and run, using SIO data
- Empirical, equilibrium-type model (Yates et al., 2009)
- Xbeach, Delft3D, Unibest
- Runup (SWASH model already setup) lidar data (Cardiff, Agate)

International Coastline Observatory Network

In-situ measurements

 wave gauges, water level, MET, elevations (bathy & topo)

Remote sensing

- cameras, radar, infrared, satellite, lidar
- **Centralized** modeling to compliment the observation stations
 - Multiple models
 - Hind-cast, Now-cast, (maybe/probably) forecast
 - Explore option of centralized computing capability (cloud?)

CIRN Vision

- Focus of monitoring efforts
- Multi-disciplinary scope
- Open access
- Environmentally diverse sites, parameter space
- Self-organized and funded
- open source mantra data sharing agreements
- meeting established data host/serving standards

Innovative solutions for a safer, better world

Development Status

- Modular, open-source approach
- Models Running Operationally
 - STWAVE phase averaged wave model
 - CMS-WAVE phase averaged wave model
 - CSHORE 1D profile evolution Model
- Models in Development
 - SWAN phase averaged wave model
 - WaveWatch3 phase averaged wave model
 - Celeris Bousinessq wave model
 - CMS-FLOW circulation model
 - D3D FLOW circulation model
 - Xbeach 2D morphology model
 - C2SHORE 2D morphology model
 - D3D MOR 2D morphology model

Collaborative environment

Innovative solutions for a safer, better world

CMS - Wave / Flow

Funded by CIRP leveraging work from CODS

Collaborators: Honghai Li, Mitch Brown, Zeki Demirbilek, Lihwa Lin

- Status:
 - CMS-wave running
- Highlights:
 - Added ASCII based input/output to CMS-Flow
 - Added Linux compatibility to source code
 - Identified and helped resolve bug fix for spectral wave model (stand alone only)

Innovative solutions for a safer, better world

Innovative solutions for a safer, better world

Quick Test:

- Initial evaluation period: 2 months
- Compared offshore of primary sandbar (3.5 m)
 - Under prediction of wave height during larger waves
- Large bias for directional resolution for waves approaching from the north

Offshore Wave Conditions

3.5 m Aquadopp comparison

Innovative solutions for a safer, better world

CMS-Flow Model grid

Model setup

- Variable cell resolution
 - 315 m > 5 m
- Domain
 - 8.5 Km in cross-shore
 - 15.5 Km in alongshore
- Spatially constant wind and water levels
 - Measured at end of pier
- Temporal Resolution:
 - Run Daily with 10 min. time-step
 - Cold Start with every measured bathymetry (~Monthly)
 - Hot Start: Each day
- Comparison Products:
 - Water Level and Directional Current Velocity at every appropriate gage.

Innovative solutions for a safer, better world

Ongoing work with CMS-Wave / Flow

- Live Plot Delivery
- CMS-Wave
 - Investigate modeling domain size, shape, resolution
 - Direction poor performance (new domain?)
 - Examine Long duration model performance
 - Resolve spectral boundary bug issue for CMS-Wave in coupled source code
 - Develop external coupling
 - Examine wave breaking calibration over long durations
 - Calibrate over ~2 week period, look at performance in surf-zone over years of model runs
- CMS-Flow
 - Figure out bug related to ASCII input/output cold start
 - Finalize setup
 - Begin testing
 - Use optical current measurement techniques for large scale spatial field comparisons for nearshore currents (Argus)
 - Chickadel, C. C., Robert A. Holman, and Michael H. Freilich. "An optical technique for the measurement of longshore currents." *Journal of Geophysical Research: Oceans* 108.C11 (2003).
 - No permanent installations of current measurements inside of the surfzone
 - This is where the optical current measurement technique works best
- C2SHORE (morphology model)
 - Start

Innovative solutions for a safer, better world

Conclusions

- FRF is a data rich environment
- Numerical models are run in real time and continually evaluated using FRF data products
- Continual assessment relates model skill to specific environmental conditions and improves operational guidance (i.e. best practices), identify poorly resolved physics, and improve models

Innovative solutions for a safer, better world