

Sedimentological and **Morphological Analysis of Artificial Nearshore Berm** near Fort Myers Beach, Florida

Sara Ramos, Jason Enfinger, Gary Zarillo

Outline

- Introduction
- Methods
- Morphological Analysis
 Topographic Changes
 Sediment Distribution
- Sediment Budget
- Sediment change
- Additional Research
- Conclusion

Study Area

Introduction

Study Area History

Introduction

Nearshore Berm

Introduction

Previous Studies

USACE (1969)

Longshore drift

 There is a nodal point approximately 3km south of Matanzas Pass where longshore drift changes directions

Brutsche et al., (2012) & Brutsche et al., (2014)

- Sedimentological Analysis
 - Fine sediment in the initial construction of the berm did not impact the beach, but was selectively transported offshore.
- Morphological Analysis
 - Southeast control area and berm area in dynamic equilibrium as of 2014

FIT Research

Introduction

- Morphological Analysis
- Topographic Changes
- Sediment Distribution
- Sediment Budget
- Sediment change
- Additional Research

Jason (2018)

Sara Ramos

Field Collection

Methods

Date	Elevation	Sediment
May 2017	Х	Х
August 2017	Х	
September 2017	Х	Х
January 2018	Х	Х
and the second		N

0.25

0

Imagery Source: DigitalGlobe, GeoEye, Earthstar, Geographics, CNES/Airbus, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

0.5 1 Miles

Methods

Laboratory Procedures

Sediment

- Sieved
- Loss on Ignition (LOI)
- Qualitative Compositional Analysis
- Energy Dispersive X-Ray Analyzer (EDAX)
- Suspended
- Filtered
- Loss on Ignition (LOI)

Elevation

Profile Analysis

Morphological

Profile Analysis

Morphological

Lower Energy

Higher Energy

September 2016 to January 2018

3D Analysis

Topographic

3D Analysis

Topographic

0.5

2 Miles

Sediment Analysis

PHI Sieve Sizes -4.25 -4 -3 3 3.5 3.75 4 -2.25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 Hydrometer Standard Sieve Sizes 3/45/8 5/16 4 5 10 14 18 25 35 45 60 80 120 170 200 230 100 0 90 10 80 20 70 30 Weight Percent Finer By Weight 60 40 Mode ≧ Coarser 50 50 rcent 40 60 Mean Ъ 30 70 20 80 10 90 0 100 10 5 100 5 1 5 0.1 5 0.01 5 0.001 Millimeters Gravel Sand Silt and Clay Coarse Fine Coarse Medium Fine Symbol Elev. (ft) USCS % Fines % Organics % Carbonates Median Sort Sample Information Sample Mean Skew Kurt #200 - 0.65 #230 - 0.61 SP FMF17SS04 0R 2.48 2.14 -1.72 6.64 0.98 Project Name: Ft. Myers Sept 2017 11-14-17 Comments: Analysis Date: Depths and elevations based on measured values Analyzed By: Scientific Environmental Applications Easting (X, ft): 678,793 5575 Willoughby Drive 766,169 Melbourne, FL 32934 Northing (Y, ft): seappinc.com NAD 1983 Horizontal System: seapp1@aol.com (321) 254-2708 Vertical System: NAVD 88

Statistical Variance

Two tailed t-Test assuming unequal variance $H_o = \overline{X_1} = \overline{X_2}$ $H_1 = \overline{X_1} \neq \overline{X_2}$

Single Factor Analysis of Variance (ANOVA) $H_o = \overline{X_1} = \overline{X_2} = \overline{X_3}$ $H_1 = One \text{ or more varibles are different}$

Post hoc: Least Significant Difference

$$LSD_{A,B} = t_{0.05/2,DFW} \sqrt{MSW(\frac{1}{n_A} + \frac{1}{n_B})}$$

Sed. Distribution

Areas of Interest

ANOVA

Sed. Distribution

Single Factor Anova: Mode

	P-Value	F-Value	F-Critical	Analysis
May	<0.01	6.31	3.02	Reject the Null
September	0.05	3.04	3.07	Cannot Reiect the Null
January	<0.01	26.40	3.02	Reject the Null

Longitudinal ANOVA

Sed. Distribution

Longitudinal ANOVA

	Single Factor Anova: Mode											
	May Sediment											
	P-Value F-Value F-Critical Analysis											
	Dune Toe	0.52	3.27	0.68	Cannot Reject Null							
	Beach	0.39	0.97	3.23	Cannot Reject Null							
	Swash Zone	0.11	2.34	3.27	Cannot Reject Null							
	Trough	0.17	1.85	3.27	Cannot Reject Null							
	4 feet	0.13	2.14	3.27	Cannot Reject Null							
3	6 feet	0.05	3.26	Cannot Reject Null								
	8 feet	<0.01	39.45	3.26	Reject the Null							
2	10 feet	<0.01	43.25	3.27	Reject the Null							

Single Factor Anova: Mode										
	January Sediment									
	P-Value F-Value F-Critical Analysis									
Dune Toe	0.57	0.57	3.27	Cannot Reject Null						
Beach	1.00	52.26	3.30	Cannot Reject Null						
Swash Zone	0.08	2.76	3.27	Cannot Reject Null						
Trough	Trough 0.70		3.27 Cannot	Cannot Reject Null						
4 feet	0.29	1.29	3.27	Cannot Reject Null						
6 feet	<0.01	16.98	3.27	Reject the Null						
8 feet <0.01		58.80	3.28	Reject the Null						
10 feet	<0.01	27.93	3.27	Reject the Null						

Spatial (May)

Spatial (September)

Spatial (January)

Sed. Budget

Sediment Budget • $\sum Q_{in} - \sum Q_{out} - \Delta V + P - R = 0$ • $\Delta V = Change in Volume/Time$

Sediment Budget

Sed. Budget

🔪 0 yd ³ /year	ala	Out	$O(yd^3/yaar)$		n	Out	Q (vd ³ /vear)	
1800	N1	N/A	-	STAR S	525	N25	74,681	
	NZ	NI	7,823	S	524	S25	84,413	Little and the second second
	N3	N2	15,306	S	523	S24	86,369	and the second second
	N4	N3	34,566	-79	522	S23	83,526	
	N5	N4	46,773	S	521	S22	84,813	
	N6	N5	59,439	See S	520	S21	86,363	
	N7	N6	69,732	S	519	S20	85,982	
	> N8	N7	73,586	S S	518	S19	87,824	the that has a first
	N9	N8	75,049	S	517	S18	102,007	
	N10	N9	80,774	S S	516	S17	112,537	1 million and the
	N11	N10	82,687	S	515	S16	122,364	
	N12	N11	80,682	C S	514	S15	129,759	
	N13	N12	77,246	S	513	S14	129,962	
	N14	N13	68,526	S	512	S13	132,361	
	N15	N14	54,499	1 7-5	511	S12	136,793	
	N16	N15	45,612		510	S11	134,131	194 17 34
	N17	N16	45,329	J S	59	S10	131,260	
	N18	N17	37,567	SULS	58	S9	125,685	
	N19	N18	33,202	S	57	S8	118,314	
	N20	N19	27,862	S	56	S7	109,191	
	N21	N20	22,182	S	55	S6	99,109	
	N22	N21	18,862	S	54	S5	83,930	
	N23	N22	20,728	S	53	S4	64,261 🕯	
	N24	N23	41,560	S	52	S3	43,766	The second second
	N25	N24	61,509		51	S2	21,138	
		1. B. B. Y.	and start spectra		N/A	S1	65	65 yd ³ /year

Area Change

May

January

Two-tailed t-Test							
Change from May 2017 to January 2018							
P-Value t-Stat t-Critical Analysis							
Northwest control area	0.10	1.65	1.97	Cannot Reject the Null			
Berm area 0.12 1.55 1.97 Cannot Reject the N							
Southeast control area	0.16	1.41	1.97	Cannot Reject the Null			

Change/Time: ANOVA

Sed. Change

Single Factor Anova: Mode

Change in Time								
P-Value F-Value F-Critical Analysis								
May to September	0.44	0.84	3.07	Cannot Reject the Null				
September to January	Cannot Reject the Null							
May to January	0.01	4.96	3.02	Reject the Null				

Post hoc: LSD

Least Significant Difference (LSD)							
Groups	roups Mean Difference LSD Resul						
Berm & North	0.0022	0.0021	Different				
Berm & South	0.0097	0.0021	Different				
North & South 0.0075 0.0026 Differen							

ANOVA Results						
Groups Average (mm) Variance (mm						
South	0.0037	0.0003				
Berm	-0.0060	0.0008				
North	-0.0038	0.0004				

Remote Sensing

Remote Sensing

Add. Research

SEM-EDAX

Add. Research

Morphology

Conclusion

-0.5

<.?

Largest Accretion around berm Onshore to offshore berm movement indicates equilibrium

Imagery Source: Esri, DigitalGlobe, GeoEye, Earthsta CNES/Airbus DS,USDA, USGS, AEX, Getmapping, A

Sediment

- Large fine-grained area not related to berm deposition.
- The ANOVA and LSD on sediment changes over time indicates the system is in dynamic equilibrium, although sediment does change differently in southern area.

May Carbonate Distribution

Conclusion

Further Research

- Compare present sediment attributes to historical data to determine source of finegrained material
- Calculate Compositional percentage in order to calculate remote sensing error matrix.
- Correlate wave data to model sediment movement and correlate to elevation data.

Conclusion

Acknowledgments

Funding

United States Army Corps of Engineers Dr. Gary Zarillo

Field Collection

- Gary Zarillo
- Jason Enfinger
- Irene Watts
- Kristen Hall
- Ahsan Habib
- James Ramos II
- Kerri Allen
- Kaleigh Dinoto

Laboratory Processing
Kerri Allen
Julia R Mokuy
Kaleigh DiNoto
Emily Perron
Carlos Rivera

References

 Brutsché, K., et al., 2012. First Year Sedimentological Characteristics and Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida. University of South Florida, ProQuest Dissertations Publishing. 1496893

 Brutsché, K., et al., 2014. Evolution of Artificial Morphologic Perturbations in the Form of Nearshore Berm Nourishments Along the Florida Gulf Coast. University of South Florida, ProQuest Dissertations Publishing. 3631316

Davis, J., 1986. Statistics and Data Analysis in Geology. John Wiley & Sons, Inc. ISBN 0-471-08079-9

Florida Department of Environmental Protection, 2009. Matanzas Pass Channel Restoration and Maintenance Dredging. Permit No 158893-005 JC and 158893-006 BV

Heiri, O., Lotter, A., and Lemcke, G., 2001. Loss of ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25: 101-110.

US Army Corps of Engineers, 1969. Beach Erosion control study on Lee County, Florida. USACE Jacksonville District, 216 pp.

US Army Corps of Engineers, 2001. Lee County, Florida shore protection project (Gasparilla and Estero Islands) general reevaluation report with final environmental statement. USACE Jacksonville District, 833 pp.

May-January Sediment Size Change

May Suspended Load

January Suspended Load

Correlating Suspended to Sediment

R ² va					
	Mean Grain Size (mm)	% Fines	Skew		
Surface Concentration	0.0225	0.0055	0.006		
Mid-depth Concentration	0.0064	0.0229	0.0012		
Bottom Concentration	0.0464	0.0151	. 0.0348		
		5	May Sedi	ment	
		4 ۵۵ ع	Ŕź	= 0.6543	
and the second second		$R^2 = 0.5108$	0.5618		South-MayBerm-May
	and the second		0.5 1	1 5	 North-May
	and the	N	1ean Grain Size (m	1.5 1m)	

Suspended Spatial Analysis (Surface)

Suspended Spatial Analysis (Mid-Depth)

Suspended Spatial Analysis (Bottom)

May Carbon Distribution

