**ERDC** Engineer Research and Development Center

10

11

### Mud Aggregate Transport and Durability

**Jarrell Smith, Richard Styles** 



US Army Corps of Engineers ®

#### Mud Aggregates









Innovative solutions for a safer, better world

**BUILDING STRONG®** 

#### **Reservoir Sedimentation** Cochiti Lake, New Mexico



### **Durable Aggregates**









Innovative solutions for a safer, better world

**BUILDING STRONG**®

#### **Navigation: Near-Channel Placement and Sedimentation**



James River: Channel Adjacent Placement Area



**Collected aggregates from erosion testing** 

**Sediment Transport Modes** 



# **Research & Development -- Aggregate Transport**

- Aggregate Erosion Dave Perkey
  - What are the initial states of aggregation upon erosion? What sediment properties control aggregate size?
- Aggregate Durability Jarrell Smith, Richard Styles
  - What rate do bed aggregates break-up? Is there a minimum size of breakup? What sediment properties relate to aggregate durability?
- Modeling Framework Gary Brown
  - Presently developing a flexible modeling framework and library to accommodate aggregate transport processes.





## **Materials**

| Sediment                  | Min Density<br>[g/cm <sup>3</sup> ] | Max Density<br>[g/cm <sup>3</sup> ] | Clay (%) | PI  | Activity |
|---------------------------|-------------------------------------|-------------------------------------|----------|-----|----------|
| Duluth Harbor             | 1.68                                | 2.02                                | 8        | 31  | 3.8      |
| Houston Ship<br>Channel   | 1.62                                | 2.10                                | 32       | 44  | 1.4      |
| Gulfport, MS              | 1.35                                | 1.90                                | 15       | 110 | 7.4      |
| James River,<br>VA        | 1.48                                | 1.90                                | 13       | 60  | 4.6      |
| Pascagoula<br>Channel, MS | 1.57                                | 2.07                                | 28       | 51  | 1.8      |





Innovative solutions for a safer, better world

**BUILDING STRONG**®

### **Aggregate Durability Apparatus**

- Durability Apparatus
  - ▶ 140 mm diameter drum
  - ► Mesh size
    - 2mm (std)
    - 0.25mm (modified)
  - ► Rotation 30 rpm
    - Effective aggregate rolling speed (15 cm/s)
  - ► Exposures (2.5,5,10,20 min)
- Materials tested at five intervals between LL & PL





After 5 min



Innovative solutions for a safer, better world

## **Durability Flume**

- Durability Flume
  - ▶ 12-m long
  - ► Oscill. Square Wave
    - Amplitude 30,40,50 cm/s
  - ► Exposures (indefinite)
- Materials tested at three intervals between LL & PL
- Size distributions over time
- Aggregate Velocity
- Size Distribution over vertical







### **Durability Flume**

- Procedures
- Measurements
  - Size distributions over time
  - ► Aggregate Velocity
  - Size Distribution over vertical









# Houston Ship Channel Results



Flume

10<sup>1</sup>

 $\rho_{b}$ =1.62 g/cm<sup>3</sup>

2.5



# **Technical Transfer**

#### Testing Methods

- Reference. Existing testing will serve as a reference of sediment properties contributing to aggregate formation and durability. (Atterbergderived quantities: LL,PL,PI, A), clay content, clay mineralogy)
- Aggregate Durability Apparatus. Quick, standardized testing method to assess durability.
- Aggregate Durability Flume. Higher fidelity testing method, develops sediment specific breakup rates.
- Modeling Approach
  - Ignore. If testing indicates no aggregates formed or aggregates extremely fragile.
  - ► Static. Represent aggregates as a persistent and static class of particles.
  - Dynamic. Include Abrasion Model in modeling to account for size class dynamics and evolution of transport modes.