

Investigation of Surface Wind Input for Coastal Zone Applications

Lihwa Lin and Zeki Demirbilek

CIRP Technical Discussion 5 February 2019

Lake Superior

Improve Wind Input for Coastal Applications

- Objective: improve wind input for engineering applications in coastal zone, bays and estuaries
- Advancement: provide USACE user community more reliable and accurate wind input for various applications
- Products: document research findings and provide a user guide on procedure for improved wind input

(1) $U_{sea}(m/sec) = 1.85 + 1.2 U_{land}(m/sec)$

(Liu et al., 1984)

(Hsu, 1985)

2)
$$U_{sea}(m/sec) = 1.62 + 1.17 U_{land}(m/sec)$$

- Eq.(1) is based on graphs by Resio and Vincent (1977) for the Great Lakes region
- Eq.(2) is based on NDBC, NOAA, Oil Rig, Airport data
- Wind is blowing from land to sea
 - U_{sea} at 20-m level, above MSL

Plot of $\frac{U_{sea}}{U_{land}}$ **versus** U_{land}

Plot of

• Based on Eq.(1)

 $\frac{U_{sea}}{U_{land}}$ versus U_{land} and ΔT

- U_{sea} at 10-m level, above MSL
- Upper bound of curve d ~ 1.6

(Schwab and Morton, 1984)

Basic Governing Eq. assuming there is linear relation between $\frac{dU}{dx}$ and U, the over-water wind speed along distance x.

1-D Governing Eq. & BCs

1-D Governing Eq.
$$\frac{dU^*}{dx^*} = \frac{a - U^*}{b}$$

where $U^* = \frac{U}{U_l}$ (≥ 0) is the dimensionless over-water wind speed
 $U_l = U$ ($x = 0$) is the wind speed at land-water boundary
 $x^* = \frac{x}{x_L}$ (≥ 0) is the dimensionless distance over water surface
 x_L is an upwind characteristic land range
 a, b (> 0) are dimensionless parameters

Boundary Conditions

BC1: $U^* = 1$ or $U = U_l$ @ $x^* = 0$ or x = 0

BC2: $U^* = U^{*,c}$ or $U = U^c$ @ $x^* = \infty$ or $x = \infty$

where $U^c \sim 1.6 U_l$ is given as the upper bound of U

BUILDING STRONG_®

Solution of 1-D Over-Water Wind Speed

General Solution: $U^* = a - b \cdot \exp(\frac{c - x^*}{b})$, where $c \ (< x^*)$ is a constant Use BC2, $U^* = U^{*,c}$ @ $x = \infty$, we can get $a = U^{*,c}$ Then, the solution becomes $U^* = U^{*,c} - b \cdot \exp(\frac{c - x^*}{b})$ Let c = 0 for a particular solution, $U^* = U^{*,c} - b \cdot \exp(\frac{-x^*}{b})$ Use BC1, $U^* = 1 @ x^* = 0$, we can get $b = U^{*,c} - 1 = (U^c - U_l) / U_l$ Therefore, the final solution is $U^* = U^{*,c} - (U^{*,c} - 1) \cdot \exp(\frac{-x^*}{b})$ or $U = U^c - (U^c - U_l) / \exp(\frac{U_l}{U^c - U_l} \cdot \frac{x}{x_l})$

ERDC

Final Solution Form

Assume $U^{c}(m/sec) = 1.62 + 1.17 U_{l}(m/sec)$ based on Hsu (1985),

the final solution form is

 $U \text{ (m/sec)} = 1.62 + 1.17 U_l - (1.62 + 0.17 U_l) / \exp(\frac{U_l}{1.62 + 0.17 U_l} \cdot \frac{x}{x_L})$

9

BUILDING STRONG_®

An idealized 1-D Example

- x_L , an upwind characteristic land range
 - distance of semi-constant upwind over (or across) land surface (initially given as 10 km on land boundary in the model)

For example, $U_l = 5 \text{ m/sec}$, we will have $U^c = 7.5 \text{ m/sec}$

A Prototype 2-D Example: Superior Bay

Red box – area of interest (Superior Bay)

ERDC

BUILDING STRONG®

Superior Bay Near-Field Wind Stations

Near-field wind stations:

- 1. NDBC Buoy 45028 (dep = 50 m)
- 3. NOAA DULM5 (Duluth, MN)
- Duluth Airport (KDYT - Sky Harbor Airport)

Red box – CMS model domain

BUILDING STRONG_®

Superior Bay Near/Far Field Wind Wave Data September – November 2017

CIRE

....

BUILDING STRONG®

3 Wave Gauges in Superior Harbor

- 3 wave gauges: (Aug – Nov 2017)
- 1. Wave Gauge 1 (dep = 9 m)
- 2. Wave Gauge 2 (dep = 10 m)
- 3. SBE26

(dep = 2 m)

Wave Gauge Data in Superior Harbor September – November 2017

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

Apply 1-D Eq. to CMS 2-D Grid

Procedures:

- 1) Decompose all wind station data into CMS grid (x,y) components.
- 2) Assign different usage index for each wind station (0 to 5, with 0 for skipping the station data, 5 for the most usage of station data)
- Interpolate all source wind (x,y) components into CMS grid boundary by using weights of distance between wind station and CMS grid boundary cells and the usage index of wind station(s)
- 4) For each cell on the CMS grid boundary, use the wind component normal to the boundary and pointing inward the grid domain for the 1-D over-water wind speed calculation along the row aligned with the boundary cell.
- 5) Sum up calculated wind (x,y) components at each cell inside CMS grid domain for the CMS modeling use.

ERDC

An Example of Wind Output @ 17090500

Usage

Index

5

4

1

3

0

Innovative solutions for a safer, better world

BUILDING STRONG®