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A Swash Closure in CMS

New subroutines and not a module, so not portable.

FY20 objective was to introduce a swash closure into CMS numerically,
with only a cursory treatment of the physics

Code outline

New simple physics closure — the model is wrong, they are all wrong
Numerical recipe for finding swash zone characteristics

Comparison with limited data

The model is dependent on high-quality data for comparison and
justification of empirical devices. Brittany has 6.1 project



Swash is essential in development of
reliable and general model:

*Dune erosion is a swash process

*Evidence the 2DH swash is necessary for
beach accretion

*Transport has a local peak in the swash

/

Scope of CMS SWASH:
*Instantaneous

*Wave and currents are combined
*Demarcation is a minimum depth

*Hydrodynamics are one-way coupled( appropriate for simulations with low
current at interface)

*Transport is two-way coupled
*Bed conservation is rigid



CSHORE in 2DH?

*Probabilistic hydrodynamics and transport have several
empirical closures—2Dh would have more than twice
*Steady! shallow water hydrodynamics driven by waves only.

Holland, WD with 100 yr surge and 2 yr wave
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A Swash Closure in CMS

Waves

l Initial Swash Closure

l— Working Swash Closure

Morphology




Nearshore Modeling Simplified to 1-D

So how do we

O Enc compute the
— —Dp — Df contribution
dx to R within the
swash zone?
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Swash Modeling

*Based on momentum eqn ( As the energy egn has lost meaning)
*All time-dependent term are lost ( OK for thin film)
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Swash Modeling
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Swash Modeling
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Numerical Swash Excersize
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Swash Modeling

Numerical Swash Excersize
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Swash Modeling

Numerical Swash Excersize
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Swash Sediment Modeling

A general form for transport: q = Vs [

But all parts are unknown, so rely on extrapolation from
previously computed C2SHORE transport.

Previously New Swash Cell
computed
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Swash Model, Numerical Recipe

*Execute CMS Wave, CMS Flow

*|nitialize all wet cells with scalar M and direction
*Find all dry cells with wetted neighbors

*If momentum flux is towards dry cell, compute new h
*Check that M>0, h>0, set cell to wet

*|terate to find swash cells, stop when momentum is
exhausted or no dry cells.

*Compute bottom position change
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Laboratory Model Test
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Laboratory Model Test

Longshore Current
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Laboratory Model Test

x10° Longshore Transport
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Depth-Dependent Suspension

Growing evidence that suspension slightly over predicted in outer surf/
under predicted in inner surf
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Laboratory Model Test

Longshore Transport
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Cuspate Model Test

Cuspate Beach
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Cuspate Model Test

Total Sediment Transport
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Elevation (m NAVD88)

80

scan @ 10-02-2015 09:00:01
~ R2%: 1.58m

[ Filtered Raw Data
—Mean Foreshore
—Mean Water Level
~Significant Wave Height
«+Min Rundown

«Max Runup
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FRF Cross Shore Distance (m)

Simultaneous observations of
Wave Runup, Swash
Hydrodynamics, Morphology
Change

‘Inner surfzone wave
height & spectra

Mean water level
Runup elevations
‘Foreshore beach profile
(hourly & wave by wave)
& 3D morphology



Next steps

Recal: AN = U;zh LB gﬁ

Bruder 6.1:
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7 /DEPLOYMENTS: DUNEX 2019

TOPOGRAPHY WATER SURFACE
Stereo Surface Elevations Compared with Buried RBR Pressure Sensors

Shorebreak S1

Mean Stereo Topography
compared with Hourly Terrestrial
Lidar Scan from Pier

EwvationDepth

RMSD=0.11m Bias=0.04m r**0.69 ! }
‘)(' 50 100 150 200 255 . 30 350 400 450 §00
Comparisons have small RMSD, Stereo resolve
high frequencies not resolved by buried

pressure sensors

Alongshore + Cross-shore variations observed, can quantify forcing for ERDC
Numerical Models (Johnson, CIRP)

”)Mun Surface Elevation with Alongshore Mean Removed
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Conclusions

*Swash is (almost) always neglected — in spite of importance

*Challenge in making physically realistic numerical model when system is
underspecified

*A simple evolution scheme is introduced where momentum propagates
into previously dry cells

*Scaling is provided to ‘close’ the time-averaged terms

*Simple model provides similar results with CSHORE

*Sediment transport is an extrapolation from C2SHORE results
*Comparison with lab data indicates deficiency in suspension model
*Model with altered breaking suspension + swash transport compares
reasonably well with data

*Plans include effort to compare model to FRF data, justify alter
formulation
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