

APPLICATIONS OF THE CORPS SHOALING ANALYSIS

 TOOL (CSAT) TO EVALUATE DEPTH RESTRICTIONS AT ENTRANCE CHANNELS WITH EXAMPLES FROM SOUTHWEST PASS, PASCAGOULA HARBOR, AND MOUTH OF THE COLUMBIA RIVERMichael Hartman
Nick Lenssen
Ned Mitchell
Lauren Dunkin

CIRP Technical Discussion
March 24, 2020

Coastal Navigation Portfolio Management

Advance objective, quantitative, and systems-based approaches to management of the Corps' large coastal navigation portfolio of projects.

Corps Shoaling Analysis Tool (CSAT)

Description

-CSAT estimates shoaling rates using hydrographic surveys within the boundary of the National Channel Framework.
-CSAT uses the historical shoaling rates to predict future dredging volumes at various channel depth intervals.

- Where are shoaling 'hot spots' within the navigation channel?
- How has shoaling changed as a result of meteorological events (extratropical storm, rainfall or drought periods), dredge schedule change or dredge type change?

National Channel Framework, hydrographic survey map sheet from eHydro, and the shoaling rate prediction for Columbia River, OR.

Shoaling Impacts on Channel Availability

Historically evaluated channel availability by controlling depth in each channel quarter.

Controlling Depth is the shallowest depth that might be encountered.
Currently testing Controlling Depth vs Project Depth (reported by Maintained Depth in NCF)

```
if controllingDepth < projectDepth
    channelAvailable = false;
else
    channelAvailable = true;
end
```


This definition means that it is possible for a single survey point to declare the entire channel as unavailable. Does that single point actually impact the vessel traffic though?

Routing Methodology Overview

1. Pick Start/End Goals
2. Identify areas shallower than target depth (set initial target depth = maintained depth)
3. Buffer around shallow depths
4. Calculate route

- If routing unsuccessful, set target depth 1 ft shallower and go back to Step 2
- If successful and target depth >= maintained depth, try 1 ft deeper until no longer passing

The deepest depth permitting successful routing is considered the controlling depth.

```
if controllingDepth < projectDepth
    channelAvailable = false;
else
    channelAvailable = true;
end
```


Channel Navigability

Channel Navigability - Sample Vessel

- Representative Vessel
- Panamax
- Length: 965 ft
- Beam: 106 ft

Test Cases

1. Southwest Pass
2. Pascagoula Harbor
3. Columbia River

Southwest Pass (SWP)

Reach Code	Reach Description	Authorized Depth (ft)	Maintained Depth (ft)	Length (miles)	Width (ft)
CEMVN_SW_01.SWP_01	MILE 13.4 TO 10.5 AHP	48.5	48.5	2.9	750
CEMVN SW .02.SWP. 01	MILE 10.5 TO 7.7 AHP	48.5	48.5	2.8	750
CEMVN_SW_03.SWP.01	MILE 7.7 TO 4.8 AHP	48.5	48.5	2.9	750
CEMVN_SW_04.SWP_01	MILE 4.8 TO 2.0 AHP	48.5	48.5	2.8	750
CEMVN_SW.05.SWP_01	MILE 2.0 AHP TO 1.0 BHP	48.5	48.5	3	750
CEMVN_SW.06.SWP_01	MILE 1.0 TO 3.7 BHP	48.5	48.5	2.7	750
CEMVN_SW_07.SWP_01	MILE 3.7 TO 6.7 BHP	48.5	48.5	3	750
CEMVN_SW.08.SWP.01	MILE 6.7 TO 9.6 BHP	48.5	48.5	2.9	750
CEMVN_SW.09.SWP.01	MILE 9.6 TO 12.4 BHP	48.5	48.5	2.8	750
CEMVN_SW_10-SWP_01	MILE 12.4 TO 15.2 BHP	48.5	48.5	2.8	750
CEMVN_SW_11.SWP_01	MILE 15.2 TO 18.0 BHP	48.5	48.5	2.8	600-750
CEMVN_SW_12.SWP_01	MILE 18.0 TO 21.0 BHP	48.5	48.5	3	600
CEMVN_SW_13SWP_01	MILE 19.2 TO 22.0 BHP	48.5	48.5	2.8	600

23 Reaches - 37.2 miles

Southwest Pass (SWP)

Southwest Pass (SWP)

US Army Corps of Engineers • Engineer Research and Dev

Pascagoula Harbor (July 2015 - July 2019)

23 Reaches - 15.92 miles

Reach Code	Reach Description	Authorized Depth (ft)	Maintained Depth (ft)	$\begin{aligned} & \text { Length } \\ & \text { (miles) } \end{aligned}$	Width (ft)
CESAM_PH_01-PSB_1	Pascagoula Bar Channel	44	44	1.54	450
CESAMLPH_01.PSB_2	Pascagoula Bar Channel	44	44	1.08	450
CESAM-PH_01_PSB_3	Pascagoula Bar Channel	44	44	1.08	450
CESAMPPH.01-PSB. 4	Pascagoula Bar Channel	44	44	1.1	450
CESAMPPH.01-PSB.5	Pascagoula Bar Channel	44	44	0.62	450
CESAM PH_01.PSB_6	Pascagoula Bar Channel	44	44	0.61	450
CESAM PH_01-PSB_7	Pascagoula Bar Channel	44	44	0.2	450
CESAMLPH_02-PHL_ 1	Horn Island Pass	44	44	0.61	600
CESAM.PH.02.PHL_2	Horn Island Pass	44	44	0.26	600
CESAMPPH_02.PHL_3	Horn Island Pass	44	44	0.56	600
CESAMLPH_03.PLS_1	Pascagoula Lower Sound	42	42	0.52	350
CESAM-PH.03_PLS_3	Pascagoula Lower Sound	42	42	0.31	350
CESAM Ph_03_PLS_4	Pascagoula Lower Sound	42	42	0.77	350
CESAMPPH.03.PLS.5	Pascagoula Lower Sound	42	42	0.76	350
CESAMPPH.03-PLS. 6	Pascagoula Lower Sound	42	42	0.68	350
CESAM PH_03_PLS. 7	Pascagoula Lower Sound	42	42	0.61	350
CESAM-PH_04-BYC. 1	Bayou Casotte	42	42	0.19	350-400
CESAM_PH_04.BYC. 2	Bayou Casotte	42	42	0.45	350-400
CESAM-PH_04.BYC3	Bayou Casotte	42	42	0.55	350-400
CESAM-PH_04.BYC-4	Bayou Casotte	42	42	0.58	350-400
CESAMPPH_04.BYC.5	Bayou Casotte	42	42	0.55	350-400
CESAM-PH_04_BYC.6	Bayou Casotte	42	42	0.53	350-400
CESAM Ph.04.BYC. 7	Bayou Casotte	42	42	0.43	350-400
CESAMPPH.04.BYC. 8	Bayou Casotte	42	42	1.33	350-400

Pascagoula Harbor

Pascagoula Harbor

Columbia River (January 2011 - December 2015)

Reach Code	Reach Description	Authorized Depth (ft)	Maintained Depth (ft)	Length (miles)	Width (ft)
CENWP.Cl.00.MCR. 1	Mouth of Columbia River Entrance Range	55	55	3.3	2000
CENWP.CL.00.MCR. 3	Mouth of Columbia River Sand Island Range	55	55	2.2	2000
CENWP.CL.01.DES. 1	Desdemona Shoal	43	43	3.6	600-2000
CENWP CL.01-DES.2	Desdemona Shoal	43	43	3.6	600
CENWP.CL $03 . \mathrm{FLV}$ _1	Tansy Point Turn \& Range	43	43	3.6	600
CENWP.CL.04USN. 1	Tansy Point Turn \& Range	43	43	1.2	600
CENWP.Cl.otusn_2	Astoria Range	43	43	2.7	600
CENWP.CL.05.TNG_1	Tongue Point Channel	43	43	2.2	600
CENWP.CL.05.TNG. 2	Harrington Point Range	43	43	1.7	600
CENWP.CL.06.MLN_1	Harrington Point Range	43	43	0.9	600
CENWP.CL.06.MLN 2	Miller Sands Range	43	43	2.2	600
CENWP.Cl.06.MLN3	Pillar Rock Lower Range	43	43	0.7	600
CENWP.CL.07.PIL 1	Pillar Rock Lower Range	43	43	2.3	600
CENWP.CL.07-PIL.2	Pillar Rock Upper Range	43	43	1.3	600
CENWP_CL.08.BKW_1	Pillar Rock Upper Range	43	43	0.6	600
CENWP.CL.08BKW 2	Welch Island Reach	43	43	3.2	600
CENWP.CL.09.SKM. 1	Skamokawa Channel	43	43	3.3	600
CENWP.CL.09.SKM. 2	Steamboat Reach	43	43	0.7	600
CENWP.CL_10.PGT. 1	Steamboat Reach	43	43	0.7	600
CENWP.CL_10.PGT. 2	Puget Island Range \& Turn	43	43	3.5	600
CENWP.Cl_11.WAN. 1	Wauna Range	43	43	2	600
CENWP.CL_11.WAN 2	Driscoll Range	43	43	1.7	600
CENWP.CL. 12. WST 1	Westport Turn \& Range	43	43	2	600
CENWP.CL.12.WST. 2	Westport Channel	43	43	1.7	600
CENWP.Cl.13EUR.1	Westport Channel	43	43	0.7	600
CENWP.CL.13.EUR. 2	Eureka Lower Channel	43	43	2.1	600
CENWP-Cl. 13 EUR 3	Eureka Upper Channel	43	43	0.8	600
CENWP.Cl_14.GUL_1	Oak Point Channel	43	43	3	600
CENWP.CL_14.GUL 2	Gull Island Turn \& Chanuel	43	43	1.4	600
CENWP.CL_15.STL. 1	Gull Island Channel	43	43	0.8	600

Future Work

- Improve the routing algorithm
- Improve assumptions
- Investigate sub-regions
- Explore seasonality
- Compare against gages

Questions?

michael.a.hartman@usace.army.mil

