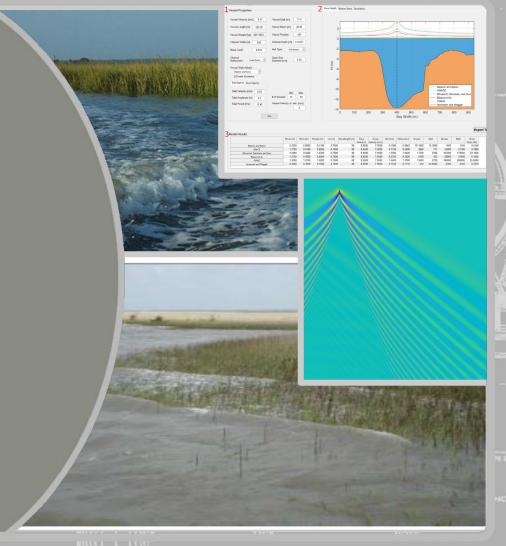


EMPIRICAL & IDEALIZED
NUMERICAL MODELING OF VESSEL
WAKE

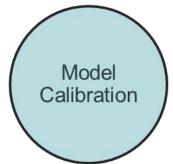

Richard Styles, Doug Krafft, Cody Johnson

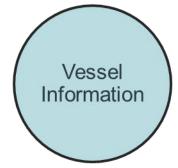
Kathy Griffin

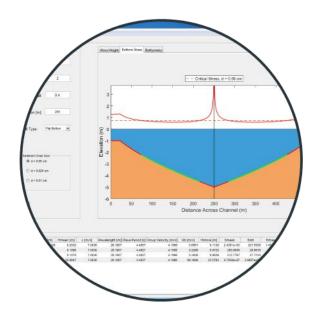
HQ Navigation Business Line Manager

Eddie Wiggins

Technical Director




Vessel Wake Prediction Tool


Input

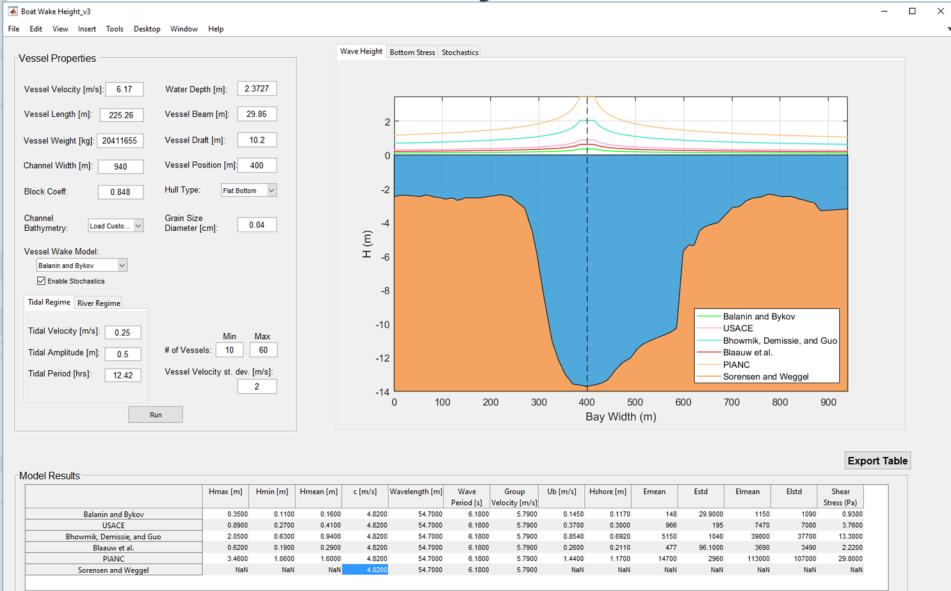
- Flow measurements
- Channel geometry
- Bank characteristics (e.g., mud, sand, oysters)
- Sediment type & distribution

- Speed
- Draft, Beam, Length
- Traffic Density

Output

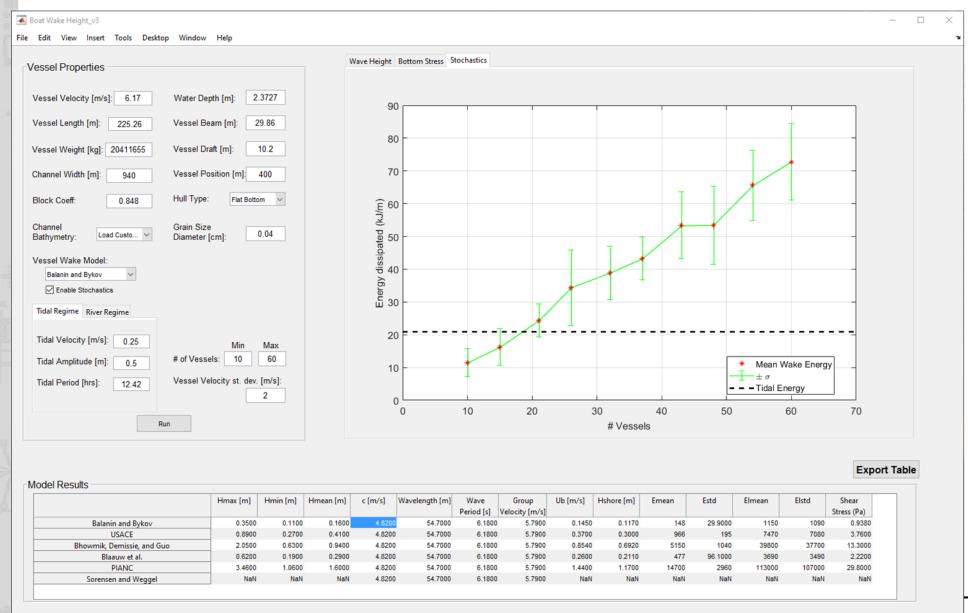
Wave height distribution, energy flux due to commercial & recreational vessel traffic.

Primary Approach



Past Work Summary

- Construct GUI based on available model formulations
- Develop capability to evaluate vessel wake effects given potential change in vessel activity
- Utilize higher fidelity models & data to reduce uncertainty



Screen Shot of Primary Interface

Vessel Stochastics

Export Results to Microsoft Excel

₩ Cut Calibri	- 11 - A A	==	Wrap Text	Genera	al +		Normal	Bad	Goo	d	Neutral	1 -		*	∑ Au	ıtoSum 👻 🏻	A #	
Paste B I U	- H - & - A		Merge & Center	- \$ -	% , 60 .00	Conditional Forma		Check Cell	Ехр	lanatory	Input			Delete Form	nat Fill	S	ort & Find	
- Pormat Painter	i – i – <u>–</u>	, , , , , ,	ge at came.	'	, , , ,	Formatting Table							-	* *	e Cle		ilter - Select	2*
Clipboard 5	Font	Alignment		G .	Number 5			Styles					-	Cells	- 1	Editin	9	
F1 + : X - /	fx																	
	В			_	-	6				V			N.	0	Р	0		
A A	_	C	D	Е	F	G	Н	1	J	K	L	М	N	0	P	Q	R	
Vessel Velocity [m/s]		Water Depth [m]	2.3727															
Vessel Length [m]		Vessel Beam [m]	29.86															
Vessel Weight [kg]		Vessel Draft [m]	10.2															
Channel Width [m]		Vessel Position	400															
Block Coeff		Hull Type	Flat Bottom															
Channel Bathymetry	C:\Users\rdchlmah\	Grain Size Diameter [cm]	0.04															
Model Statistics																		
	Hmax [m]	Hmin [m]	Hmean [m]	c [m/s]	Wavelength [m]	Wave Period [s]	Group Velocity [m/s]	Ub [m/s]	Hshore [m	Emean	Estd	Elmean	Elstd	Shear Stre	ss (Pa)			
Balanin and Bykov	0.35	0.11	0.16	4.82	54.7	6.18	5.79	0.145	0.117	148	29.9	1150	1090	0.938				
USACE	0.89	0.27	0.41	4.82	54.7	6.18	5.79	0.37	0.3	966	195	7470	7080	3.76				
Bhowmik, Demissie, and Guo	2.05	0.63	0.94	4.82	54.7	6.18	5.79	0.854	0.692	5150	1040	39800	37700	13.3				
3 Blaauw et al.	0.62	0.19	0.29	4.82	54.7	6.18	5.79	0.26	0.211	477	96.1	3690	3490	2.22				
4 PIANC	3.46	1.06	1.6	4.82	54.7	6.18	5.79	1.44	1.17	14700	2960	113000	107000	29.8				
5 Sorensen and Weggel																		
6																		
7 Model Wave Heights																		
8 x (m)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
9 Depth (m)	2.462680749	2.462680749	2.456719659	2.450499	2.444277882	2.438056932	2.431835982	2.425615	2.419394	2.413173	2.406952	2.400731	2.39451	2.388289	2.382068	2.382502	2.384078	2.
Balanin and Bykov	0.117485723	0.11758281	0.117680221	0.117778	0.117876024	0.117974419	0.118073146	0.118172	0.118272	0.118371	0.118471	0.118572	0.118673	0.118774	0.118875	0.118977	0.119079	0.
1 USACE	0.29993381	0.300181668	0.300430353	0.30068	0.300930225	0.301181423	0.301433467	0.301686	0.30194	0.302195	0.30245	0.302707	0.302964	0.303222	0.303481	0.303741	0.304002	0.
Bhowmik, Demissie, and Guo	0.692322325	0.692894442	0.69346847	0.694044	0.694622301	0.695202127	0.695783908	0.696368	0.696953	0.697541	0.698131	0.698723	0.699316	0.699912	0.70051	0.70111	0.701712	0.
3 Blaauw et al.	0.210652812	0.21082689	0.211001549	0.211177	0.211352625	0.211529049	0.211706067	0.211884	0.212062	0.212241	0.21242	0.2126	0.212781	0.212962	0.213144	0.213327	0.21351	0.
4 PIANC	1.168719117	1.169684916			1.172601739	1.173580551	1.174562664					1.179523	1.180526					
5 Sorensen and Weggel																		
6																		
7 Model Bottom Stress (N/m^2)	Critical Stress = 0.58	4 N/m^2																
8 x (m)	0		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
9 Depth (m)	2.462680749	_	2.456719659	-	2.444277882	2.438056932	2.431835982		2.419394	2.413173						2.382502		
D Balanin and Bykov	0.938337836				0.949044784	0.952302936	0.955579938					0.972253			0.982494			
1 USACE	3.755133537		3.772623078		3.799233067	3.812654837	3.826155271											
2 Bhowmik, Demissie, and Guo	13.32744175				13.4869791	13.53554081	13.58439005						13.88366				14.01184	
Blaauw et al.	2.215971589		2.226194366		2.241747492	2.249592023	2.257482339									2.324885		
4 PIANC	29.80699803		29.95015091		30.16799253	30.27788635	30.38843574									31.33337		
5 Sorensen and Weggel	25.00055005	25.0.1303334		_0,00070	50120153203	30.27.03033	55,555,74	20112200	-0102202	- 517 2 107	20.0070		-2100002		-2127.22	-2100007	_1,00000	-
Sheet1 +																		

Empirical Recreational Vessel Wake Modeling

Maynord (2005) Wave Height from Planing and Semi-planing Small Boats

$$\frac{H_m}{W^{1/3}} = C_m F_w^{-0.58} \left(\frac{x}{W^{1/3}}\right)^{-0.42}$$

Where:

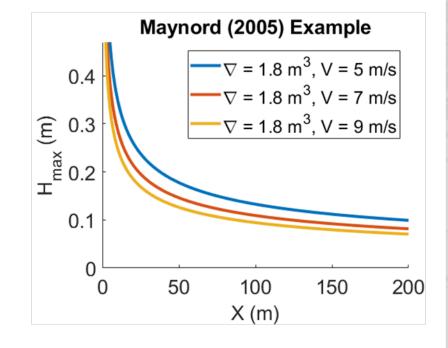
 H_m is predicted wake height

W is displaced volume

x is distance from the vessel centerline

 C_m is the vessel shape coefficient (suggested as 0.82 - 1)

 F_w is the displacement Froude number


Displacement Froude Number

$$F_w = \frac{V_s}{\sqrt{gW^{1/3}}}$$

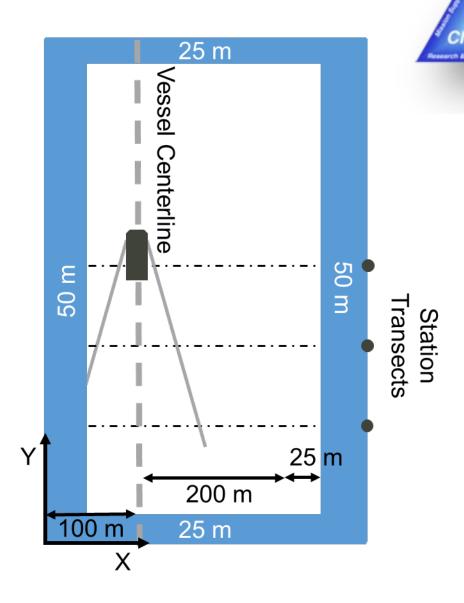
Where:

 $V_{\rm s}$ is vessel speed

Note: data forming empirical model is not without substantial scatter

Idealized Numerical Modeling

FUNWAVE


Fully non-linear Boussinesq model (Shi et al. 2012)

https://fengyanshi.github.io/build/html/index.html

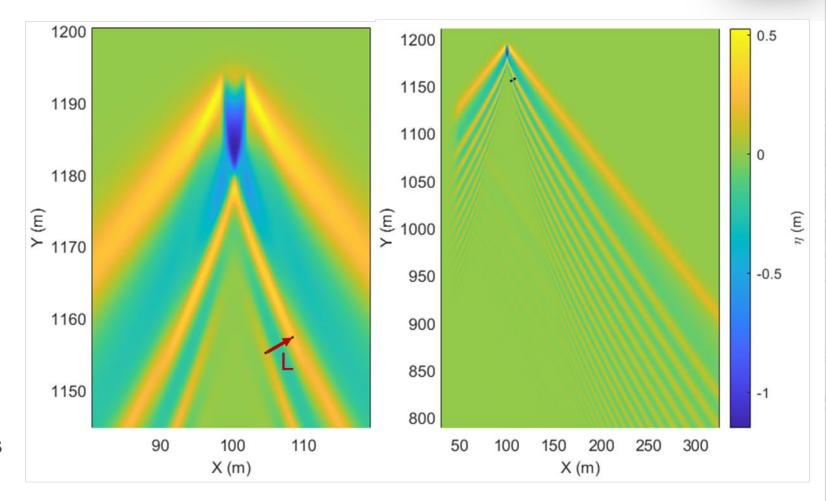
- Includes a ship-wake module
 - Validated against laboratory experiments (Gorlay, 2001) in Shi et al. (2018)

Idealized Simulations

- Simulating a single vessel, traveling through a flat domain
- Domain Size: 375 m x 1,110 m 1,925 m
- Depth (Constant): 1.75 m
- Detailed output:
 - Stations along 3 transects

Intended Vessel Wake Numerical Modeling Regime

Intended Model Regime

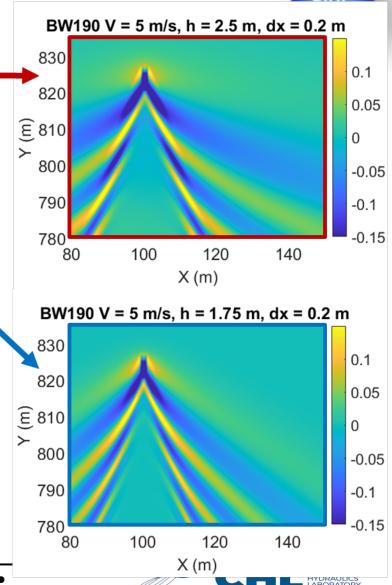

Intermediate and shallow water waves

$$k \cdot h < \pi$$

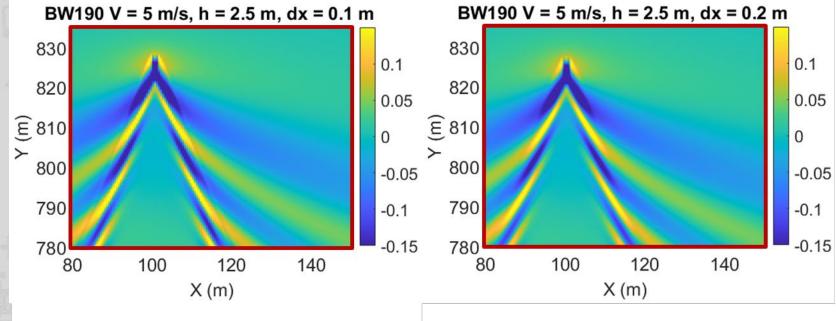
$$h < \frac{L}{2}$$

Simulated Wake Length

- Wake length estimated as the distance between peaks near the vessel
- Manual point selection (accuracy with 0.2 m cells)
- Issues encountered in simulations with L/2 < h

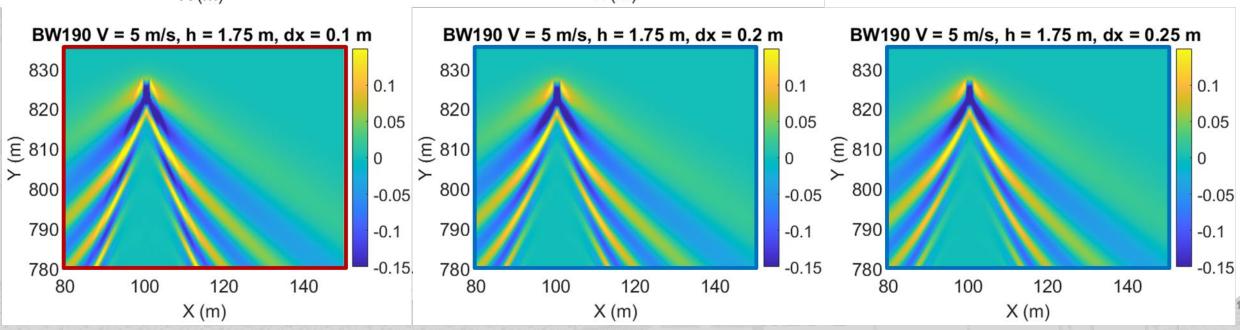


Test Simulations Relative to Intended Wake Regime


Vessel	Speed	Depth	Wake Length	kh/π
BW190	5 m/s	2.5 m	3.5 – 4.5 m	1.1 – 1.4
BW190	5 m/s	1.75 m	3.5 – 4.5 m	0.8 – 1
BW190	7 m/s	3.5 m	3.5 – 4.5 m	1.6 – 2
BW190	7 m/s	1.75 m	3.5 – 4.5 m	0.8 – 1

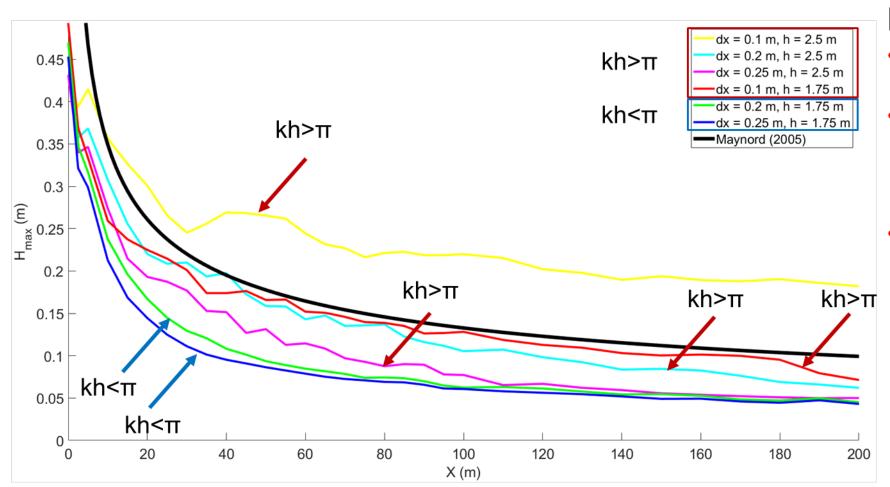
- Manual selection accuracy estimated as ~ ± 2 cells
- Changes in minimum wake length are less than method accuracy
- No noticeable wake length changes with tested depths
 & speeds
- Minimum wake lengths are sometimes greater than minima for intended regime (kh<π)
- Maynord (2005) model appears to be from scenarios in which kh > π for the minimum wake length (h > 3.5 m).

Wake Length and Depth Impact (2 Ton Vessel, 5 m/s)



Results

Differences noticed between

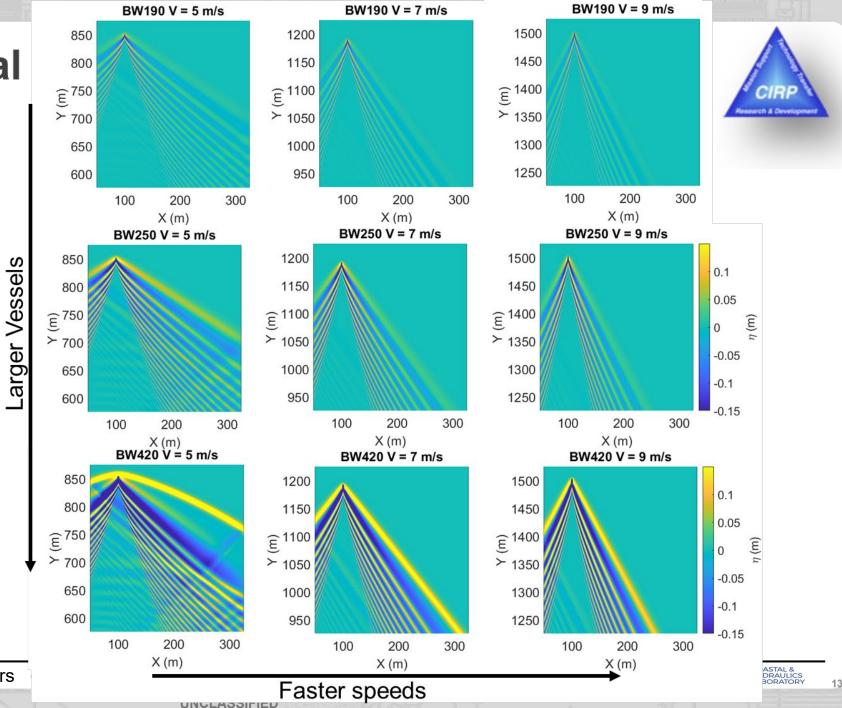

$$kh < \pi$$

Idealized Numerical Model Solutions (Depth and Resolution Impact)

2 Ton Vessel, 5 m/s

Results

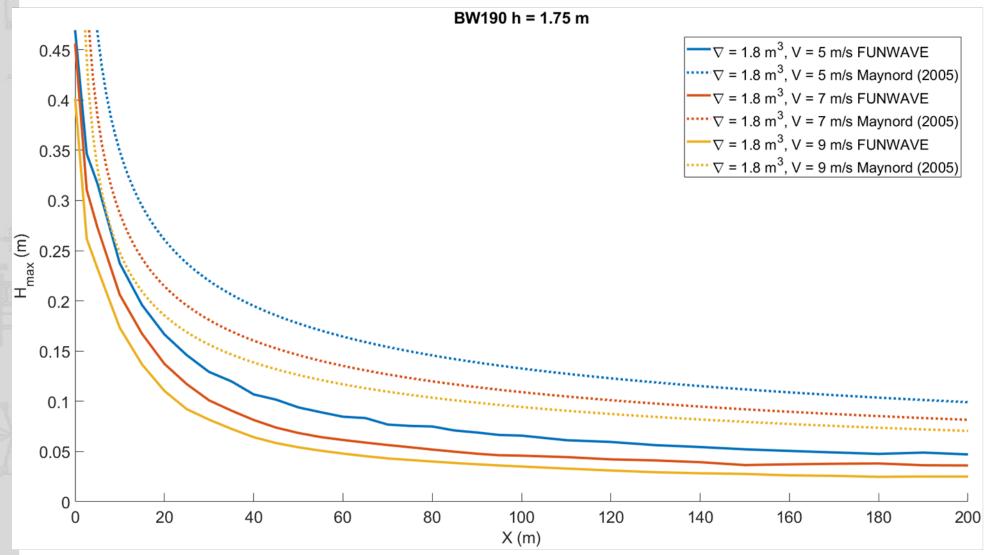
- H_{max} vary substantially where kh > π
- Results where kh < π
 appear to be reasonable,
 but H_{max} in these scenarios
 may be limited by depth.
- Concerns on adequately resolving wakes remain


Idealized Numerical Model Test Matrix

Vessel

- BW190: 2 Ton
- BW250: 6 Ton
- BW420: 23 Ton

Speed

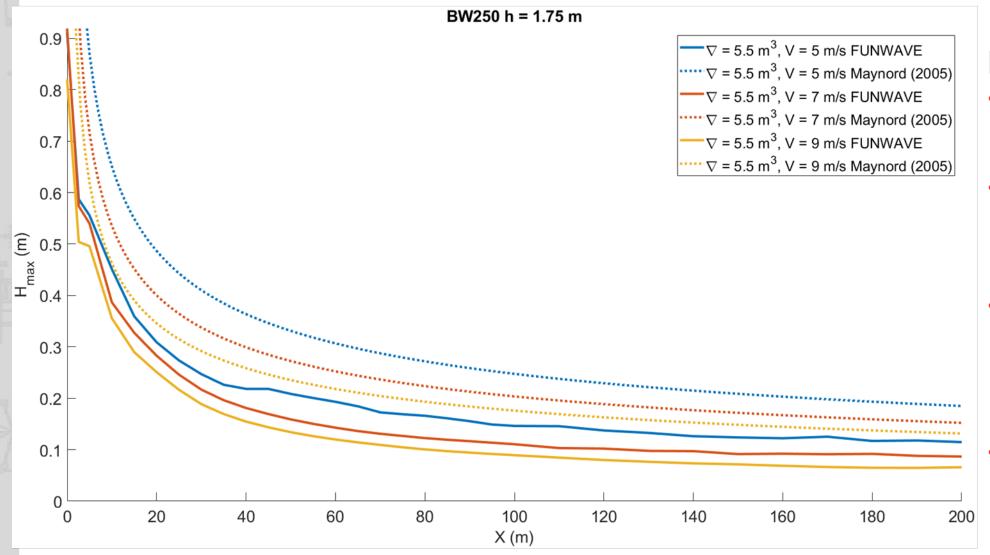

- Completed: 5 m/s (10 knots), 7 m/s (14 knots), 9 m/s (18 knots)
- Larger vessels cause substantial reflection.
 - Particularly at slower speeds
 - Testing underway to reduce reflections

Empirical vs. Idealized Numerical Model Solutions

2 Ton Vessel

Results

- H_{max} decreases
 with vessel speed
 and distance,
 following findings
 of Maynord (2005)
- $H_{max} \sim \frac{1}{2}$ of Maynord (2005) prediciton
- Maynord (2005) data collected in > 3.5 m depth
 - Depth limited solution?

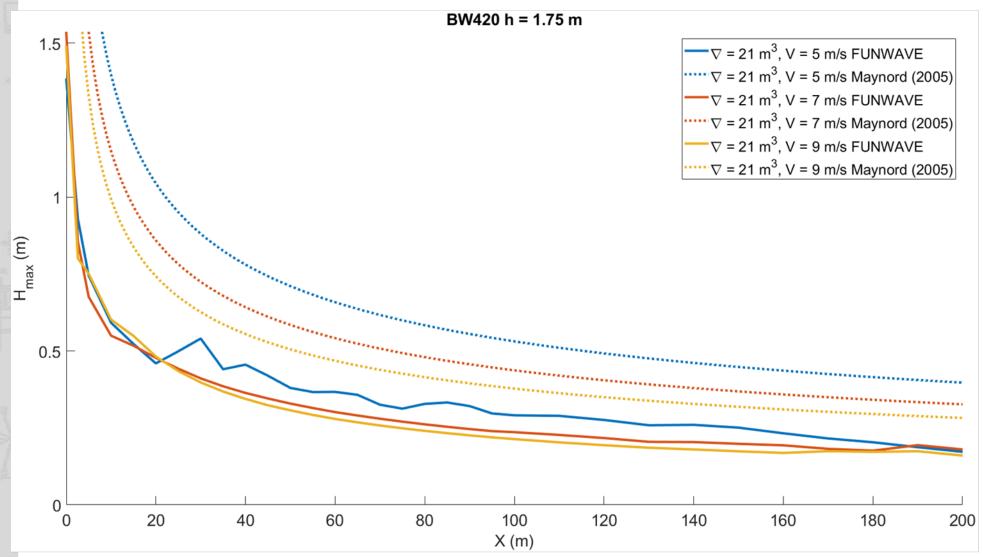

US Army Corps of Engineers • Engineer Research and Development Center •

Empirical vs. Idealized Numerical Model Solutions

6 Ton Vessel

Results

- H_{max} decreases
 with vessel speed
 and distance.
- Less substantial
 H_{max} decrease
 with velocity than
 2 ton vessel
- Maynord (2005)
 model developed
 with vessels
 lighter than 1.6
 tons
- Reflection likely impacts results.
 Working on less reflective domains.


US Army Corps of Engineers • Engineer Research and Development Center •

Empirical vs. Idealized Numerical Model Solutions

23 Ton Vessel

Results

- H_{max} does not decrease with speed
- Reflection likely impacts results.
 Working on less reflective domains.
- Maynord (2005)
 model developed
 with vessels
 lighter than 1.6
 tons

Summary

Reasonable Recreational Vessel Wake Results

Approaching reasonable solutions for relatively large recreational vessels in relatively shallow water

Persistent Issues

- Depth impact on solutions and the ability to assess the upper limit of vessel wake forcing
- Resolution dependence

Conclusions

Applicability for Scoping Level Recreational Vessel Wake Estimates

- Reliable solution matrix for a wide variety of conditions?
- Possibility remains for improved estimates of wake characteristics directly impacting edge erosion

Thank You! Questions?

