

THE COASTAL MODELING SYSTEM (CMS) VALIDATION AND VERIFICATION CMS TECH TRANSFER WORK UNIT

Honghai Li, Lihwa Lin, Cody Johnson, Yan Ding, Brad Johnson, Mitch Brown

COASTAL INLETS RESEARCH PROGRAMFY21 TECHNICAL DISCUSSION

COASTAL & HYDRAULICS LABORATORY

US Army Corps of Engineers®

CIRF

arch & Developme

UNCLASSIFIED

-0.0011 -0.0005 -0.0002 -0.0008 -0.0014 Current 5.00 m/s

Background

- Validate and verify the CMS codebase for simulating hydrodynamics, wind waves, and sediment transport/morphological change
- Update and expand previous VVUQ completed in 2012
- Testing the CMS 5.x release
- Tripartite division to the VVUQ cases:
 - Analytical: Performance of simulating fundamental physics
 - Laboratory: Extensive observation coverage and detail
 - Field: Verification in real-world conditions
- Ongoing work

Statistics

Bias (mean error) =
$$\frac{1}{N} \sum_{n=1}^{N} x - x^{*}$$

$$R^{2} = \left[\frac{\langle xx^{*}\rangle - \langle x\rangle\langle x^{*}\rangle}{\sqrt{\langle x^{2}\rangle - \langle x\rangle^{2}}\sqrt{\langle (x^{*})^{2}\rangle - \langle x^{*}\rangle^{2}}}\right]^{2}$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |x - x^*|$$

$$NMAE = \frac{MAE}{range(x^*)}$$

$$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (x - x^*)^2}$$

$$NRMSE = \frac{RMSE}{range(x^*)}$$

Analytical

Wind stress-induced Setup

Parameter	Value	
Numerical Scheme	Implicit	
Time step	600 s	
Simulation Duration	48 hr	
Wind Speed 10 m/s		
Drag coefficient	0.00161	
Advection Terms	Off	
Mixing terms	Off	
Bottom friction	Off	
Wall friction	Off	
Coriolis effect	Off	

$$\rho gh \frac{\partial \eta}{\partial y} = \tau_{si} = \rho_a C_d |W| W \qquad \qquad C_d = \left(\frac{\kappa}{14.56 - 2\ln W}\right)^2$$

$$\eta = \sqrt{\frac{2\rho_a C_d |W| W}{\rho g}} (y + C) + \zeta^2 - \zeta$$

(Dean and Dalrymple, 1984)

(Hsu, 1988)

North Wind

West Wind

Statistics	Northern Wind	
NRMSE [%]	0.109	
RMSE [m]	0.00015	
NMAE [%]	0.425	
R ² [-]	0.99998	
Bias [m]	0.00014	

Statistics	Western Wind	
NRMSE [%]	0.061	
RMSE [m]	0.00007	
NMAE [%]	0.314	
R ² [-]	0.99999	
Bias [m]	0.00070	

Wind-driven Flow in a Circular Basin

Parameter	Value
Numerical Scheme	Implicit
Time step	1800 s
Simulation duration	216 hr
Ramp duration	1 hr
Water depth	100 m
Bottom friction coefficient	0.01
Coriolis frequency	1.0e-4 Hz
Wind gradient	1.0e-4 m ² s ⁻²
Mixing terms	Off
Advection terms	Off
Wall friction	Off
Resolution	2000 – 125 m

$$gh\frac{\partial\eta}{\partial x} = f_ch\nu + \frac{y\widehat{W}}{R} - \hat{\kappa}hu$$

$$\eta = \begin{cases} \frac{Wxy}{2ghR}, & f_c = 0\\ \frac{Wf_c}{gh\hat{\kappa}R} \left[\frac{R^2}{8} + \frac{1}{4} \left(\frac{2\hat{\kappa}xy}{f_c} - x^2 - y^2 \right) \right], & f_c \neq 0 \end{cases}$$

$$u = \frac{yW}{2h\hat{\kappa}R}$$

(DuPont, 2001)

Tidal

Propagation in a Quarter Annulus

Param	eter	Value	
Boundary ti amplit	dal wave ude	0.3048 m	Closed Tidal
Tidal perio	od (M2)	12.42 hr	Boundary Boundary
Annulus inn	er radius	60.96 km	
Annulus out	er radius	152.4 km	
Annulus inn dept	er water h	10.02 m	Closed Boundary
Annulus out dept	er water h	25.05 m	Meters 0 50000
	Depth, m 26.0 22.8 19.6 16.4 13.2 10.0		Closed Boundary

Parameter	Value
Temporal solution scheme	implicit
Time step	600 s
Simulation duration	120 hr
Ramp duration	24 hr
Bottom friction	None
Wall friction	Off
Advection terms	Off
Mixing terms	Off
Coriolis force	Off

$$\frac{\partial hU}{\partial t} + gh\frac{\partial \eta}{\partial x} = 0 \qquad \qquad \eta(r_2, t) = \eta_0 \cos \omega t$$

 $\eta(r,t) = [AJ_0(\beta r) + BY_0(\beta r)] \cos \omega t$

3

$$A = \frac{\eta_0 Y_1(\beta r_1)}{J_0(\beta r_2) Y_1(\beta r_1) - J_1(\beta r_1) Y(\beta r_2)} \quad B = -\frac{\eta_0 J_1(\beta r_1)}{J_0(\beta r_2) Y_1(\beta r_1) - J_1(\beta r_1) Y_0(\beta r_2)}$$

$$\beta^2 = \frac{\omega^2}{gh}$$
 J_{α} and $Y_{\alpha} = Bessel functions of 1st and 2nd kind$

 $r = \sqrt{x^2 + y^2}$ $r_1, r_2 = inner and outer radius$

(Lynch and Gray, 1979)

Sample Point

Statistics	Water Level
NRMSE [%]	1.9
RMSE [m]	0.017
NMAE [%]	0.3
R ² [-]	0.997
Bias [m]	0.001

Transcritical flow over a bump

$$\begin{cases} h^{3} + \left(z_{b} - \frac{q_{0}^{2}}{2gh_{c}^{2}} - h_{c} - z_{b,max}\right)h^{2} + \frac{q_{0}^{2}}{2g} = 0 \qquad for \ x < x_{shock} \\ h^{3} + \left(z_{b} - \frac{q_{0}^{2}}{2gh_{L}^{2}} - h_{L}\right)h^{2} + \frac{q_{0}^{2}}{2g} = 0 \qquad for \ x > x_{shock} \\ q_{0}^{2}\left(\frac{1}{h_{1}} - \frac{1}{h_{2}}\right) + \frac{g}{2}(h_{1}^{2} - h_{2}^{2}) = 0 \end{cases}$$

(Delestre, 2013)

Statistics	Water Level	
NRMSE [%]	5.388	
RMSE [m]	0.01509	
NMAE [%]	0.142	
R ² [-]	0.91535	
Bias [m]	0.00051	

Summary

- The hydrodynamic model performed well simulating a range of processes at different physical scales.
- Water level RMSEs were less than 5% and on the order of centimeters. This indicates proper formulation. Perhaps investigating the discretization could improve results.
- Current velocity magnitude errors were typically ~10%. This is in accordance with the previous VVUQ effort.
- Computational efficiency and grid size/timestep sensitivity tests are logical further developments for this work.

Laboratory Cases

Laboratory Study of Hydrodynamics Near Absorbing and Fully Reflecting Jetties (Seabergh, Lin, & Demirbilek, ERDC/CHL TR-05-8, 2005)

Table 1 Model-Prototype Scale Relations at 1:50 Undistorted Scale			
Characteristic Dimension Model-Prototype Scale Rel			
Length	l	ℓ _r = 1:50	
Area	ℓ^2	Ar = $\ell_r^2 = 1:2,500$	
Volume	ℓ ³	$Vr = \ell_r^3 = 1:125,000$	
Time	t	$Tr = \sqrt{\ell_r} = 1.7.07$	
Velocity	l/t	$Ur = \ell_r / t_r = 1.7.07$	

Wave Gage locations

CMS2D Model Configuration Domain: 1:50 to a prototype dimension of the inlet

Parameter	Value
Model	CMS2D_v5p1.exe, (10/25/2019)
Grid size	Δx=Δy=10.0 m
Flow time step	10 min
Simulation duration	10 hr
Ramp period duration	3 hr
Manning's n (both flow and wave grids)	0.025 s/m ^{1/3}
Steering interval	1 hr
Roller	On
Roller dissipation coefficient	0.05 (default for regular waves)
Stokes velocities	On
Wave reflection coefficient	0.0
Breaking Criterion	Battjes & Janssen
Wave-to-Flow Coupling	Linear Temporal Interpolation

Case	Hs (m)	Tp (s)	Angle (°)
1	1.65	11.0	-20.0
2	2.0	11.0	-20.0
3	3.25	8.0	-20.0
4	0.95	11.0	-20.0
5	1.10	8.0	-20.0

Case	Hs (m)	Tp (s)	Angle (°)
1	1.65	11.0	-20.0

Case 1

Error Analysis (Case 1)

Current Results (by CMS2D_V5p1.exe)

,	RRMSE %	RMAE %	R2	Bias
Longshore current (U)	25.95	19.62	0.485	-0.070
Cross-shore current (V)	27.80	18.26	0.713	-0.149
Wave Height	15.23	12.71	0.825	-0.076

Alex's Results on CirpWiki

Variable	NRMSE,%	NMAE,%	R2	Bias
Longshore current	24.11	18.74	0.836	-0.141
Cross-shore current	14.27	10.30	0.907	0.017
Wave Height	13.96	10.62	0.826	0.051

Field Cases

Grays Harbor, WA

- Grays Harbor estuary is located on the southern coast of WA. A natural inlet on the west connects the harbor to Pacific.
- The federal navigation channel is 39.1 km long, 300 m wide outside the inlet and 100 m near the Port.
- Damon Point at the harbor entrance has experienced continued evolution towards the navigation channel.
 Spit encroachment on the channel may lead to increased maintenance requirements.
- The purpose of the study is to develop and calibrate a hydrodynamic and sediment transport model to evaluate potential shoaling in the navigation channel.
- A field survey program collected wave, water level, current, and sediment data in the region of Damon Point and were used for model calibration and validation (two Beach Pods, ADV265 and ADV110, and one bottom-mounted ADP).

CMS Set up

CMS-Flow:

Grid – telescoping grid Domain - 25 km alongshore and 50 km cross shore Computational grid - 57,500 ocean cells Grid resolution - 8×11 to 480×720 m Hydro time step - 900 sec.

CMS-Wave:

Grid - non-uniform rectangular grid Domain - 25×26 km Computational grid - 81,300 cells Grid resolution - 20×20 to 600×600 m

CMS Results - Goodness-of-fit Statistics

Water Surface Elevation			
Statistics	ADV265	ADPM135	
NRMSE [%]	8.082	2.983	
RMSE [m]	0.178	0.104	
NMAE [%]	7.195	2.386	
R ²	0.981	0.984	
Bias [m]	-0.156	0.034	

Principle Current Velocity			
ADV265	ADV110	ADPM135	
14.483	17.056	5.200	
0.087	0.154	0.094	
11.067	13.422	4.150	
0.542	0.531	0.966	
0.029	0.032	-0.013	

Wave Parameters				
	ADV265		ADPM135	
Statistics	Significant Wave Height (m)	Peak Wave Period (s)	Significant Wave Height (m)	Peak Wave Period (s)
VRMSE [%]	16.688	22.078	10.169	14.917
RMSE	0.134	4.195	0.132	2.685
NMAE [%]	12.775	14.995	7.815	10.006
R ²	0.424	0.111	0.582	0.412
Bias	0.069	-1.860	0.010	-1.180

Coos Bay, OR

- Coos Bay Inlet System: large waves and strong tidal current in the system
- Annual maintenance dredging of the navigation channel and sand material is placed in nearshore ocean dredged material disposal site (ODMDS) to supplement the littoral sediment budget
- Sediment interaction with waves and current induces channel backfilling and decreases channel navigability
- Sediment tracer study and numerical model to investigate littoral sediment transport for the Coos Bay inlet and estuarine system and to evaluate the effects and the short- and long-term response of nearshore dredged material placement to coastal wave and hydrodynamic environment.

CMS Set up

CMS-Flow:

Grid – telescoping grid Domain – 31 × 32 km Computational grid - 132,000 ocean cells Grid resolution - 20 × 20 to 320 × 320 m Hydro time step - 600 sec.

CMS-Wave:

Grid - non-uniform rectangular grid Domain - 31×32 km Computational grid - 212,700 cells Grid resolution - 20×20 to 320×320 m

Model Calibration/Validation

- Time series measurements: acoustic wave and current profiler (AWAC) and tidal gage
- Instantaneous measurements: vessel mounted ADCP along transects

CMS Results - Goodness-of-fit Statistics

Water Level, Current

Water surface elevation		Principle current velocity	
Statistics	WL Gauge	Statistics	AWAC Gauge
NRMSE [%]	6.068	NRMSE [%]	15.840
RMSE [m]	0.206	RMSE [m/s]	0.079
NMAE [%]	4.938	NMAE [%]	12.420
R ²	0.946	R ²	0.324
Bias [m]	-0.016	Bias [m/s]	0.030

Wave parameters

	AWAC Gauge			
Statistics	Significant Wave Height (m)	Peak Wave Period (s)	Mean Wave Direction (deg)	
NRMSE [%]	8.336	7.158	2.006	
RMSE	0.375	1.217	6.418	
NMAE [%]	6.380	4.586	1.588	
R2	0.834	0.682	0.788	
Bias	0.222	0.129	2.228	

CMS Results - Goodness-of-fit

Statistics

Vessel-mounted instantaneous current measurements and CMS calculations in transects from 28 September to 1 October 2015.

Statistica	Current Velocity (m/s)		
Stausucs	U Component (E-W)	V Component (N-S)	
NRMSE [%]	6.393	5.129	
RMSE	0.197	0.147	
NMAE [%]	4.471	3.669	
R2	0.855	0.840	
Bias	0.008	0.003	

Summary

- The CMS performs well in simulating tidal hydrodynamics at a coastal inlet and estuarine system in the presence of waves and wind.
- Time series measurements of water levels, current velocities, and wave parameters are well reproduced at AWAC (ADCP) and tidal gages.
- The model has also caught instantaneous measured currents along selected transects around the inlet and navigation channel.
- Goodness-of-fit statistics are used to assess the model performance and the model results agree well with measurements in nearshore breaking zone and in offshore deeper area.
- The model results demonstrate that it is reasonable to use large time steps, on the order of 15 min, for similar tidal inlet hydrodynamic studies.

references

- DuPont, F. (2001). *Comparison of numerical methods for modeling ocean circulation in basins with irregular coasta*. McGill University.
- Delestre, O., Lucas, C., Ksinant, P. A., Darboux, F., Laguerre, C., Vo, T. N. T., James, F., & Cordier, S. (2014). SWASHES: A compilation of shallow water analytic solutions for hydraulic and environmental studies. *International Journal for Numerical Methods in Fluids*, 74(3), 229–230. <u>https://doi.org/10.1002/fld.3865</u>
- Lynch, D. R., & Gray, W. G. (1979). Analytic Solutions for Computer Flow Model Testing. *Journal of the Hydraulics Division*.