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Introduction

- Will sediment placements in the nearshore be mobile? == Prior studies focus on this question.
- At what rate will placed sediment move? @— Little attempt to evaluate.

* Project goal is to develop a method for calculating nearshore berm deflation rates which meets the
following criteria:

« Order-of-magnitude deflation rate estimates.
* Quick calculations with minimal computational effort.
- Based on easy-to-estimate design parameters.
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The big picture

» Longshore and cross-shore transport are treated as independent (orthogonal) processes which can be
calculated separately and superimposed.

» Nearshore berm “deflation” is defined as the transport of sediment away from the original placement
footprint.

» Assume that sediment is exclusively removed from the berm (no “reinflation”).

« Berm geometry (cross-shore position, length, depth at crest, efc.) are assumed constant in time.

« Wave conditions vary with At=1 hour.
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The big picture

Example WIS forcing data from Newport Beach, CA
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Recap: berm deflation via longshore transport
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CERC equation:

_ prgO.SHg.S
16y0°(ps — pw)(1 — )

Q

sin 26,

Longshore transport q(x)

Cross-shore coordinate x
where

Q Longshore volumetric transport rate
K CERC coefficient Recall that Q = f q(x)dx
H,  Significant wave height at breaking Vo
Yb Breaker index, assumed to equal 0.78
0y Breaker angle
pw,Ps Density of water and sediment

Therefore Qperm = Q for some unknown 0 < f < 1.
n Porosity



Recap: berm deflation via longshore transport
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Fraction of Q contributing to berm deflation is
based on literature-reported g (x) profiles and
the berm’s position in nondimensional space.
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Recap: berm deflation via longshore transport

Fraction of Q contributing to berm deflation is
based on literature-reported g (x) profiles and
the berm’s position in nondimensional space.
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Recap: berm deflation via longshore transport
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Recap: berm deflation via longshore transport

Equation Parameters influencing longshore transport

CERC equation (constant K) Depth at breaking

Kamphuis and Readshaw (1978)
CERC adaptation

Kamphuis (1991) equation Grain size, period, beach slope (linear)

Mil-Homens et al. (2013)
modification of Kamphuis (1991)

Depth at breaking, wavelength, beach slope (linear)

Grain size, period, beach slope (linear)

Bayram et al. (2007) equation Depth at breaking, grain size, period, beach profile (nonlinear), friction coefficient

Mil-Homens et al. (2013)

modification of Bayram et al. Depth at breaking, grain size, wavelength, beach profile (nonlinear), friction

(2007) coefficient
Van Rijn (2014) equation Grain size, wavelength, beach slope (linear)
Shaeri et al. (2020) equation Grain size, wavelength

NOTE: All equations depend on water and sediment density, sediment porosity, breaker angle, and breaker height



Longshore deflation results

« Most equations display a negative bias (underprediction of transport).
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Updated methods: cross-shore transport

« Recall that we are treating longshore and cross-shore transport as independent values which can be
calculated separately and superimposed.

» Cross-shore deflation can be directed onshore (pictured) or offshore depending on wave conditions
and site geometry.

» Early attempts to calculate a cross-shore deflation rate generated values that were several orders of
magnitude too large.

» New cross-shore method from Austin Hudson, Rod Moritz, and Jarod Norton (accepted Technical Note
forthcoming in 2021) accurately predicted nearshore berm deflation rates at the Columbia River mouth.
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Updated methods: cross-shore transport

m=beach Critical velocity scaling term (no transport if peak
Based on Dronkers (2016): profile slope orbital velocity is less than critical velocity)

v ; , —
Qcross = lalAm{|uy, |°) — (luw|*uw)(1 — k)]l - cos(Bcrest) Ay
w_/ — -
Y
down-slope transport wave velocity-
due to gravity driven transport

where K = mln( cr/u$ax ’ 1), and @ and A are empirical parameters.



Updated methods: cross-shore transport

Alongshore length of

Based on Dronkers (2016): placed sediment
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Unit-width, wave-averaged
(mostly) cross-shore transport

Limit to cross-
shore component

. u
where K = min( "

Near-bed velocity u,, is determined from stream-function wave theory based on depth of berm
crest, wave height at berm crest, and deep-water wavelength.

L Max , 1), and @ and A are empirical parameters.
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Updated methods: cross-shore transport
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Cross-shore deflation results

Underprediction at all sites except Port Canaveral (site 3), Perdido Key (site 5), and Ocean Beach (site 9).
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Superimposed longshore and cross-shore transport
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Conclusions

Best-performing method: Shaeri et al. (2020) longshore transport with Dronkers (2016) cross-shore transport
« Comparatively low bias (-110 m3/day)
« Comparatively low percent error magnitude (average 72%)
« Low sensitivity to grain size (4% change in calculated value when d, is varied by +20%)
« Low sensitivity to beach slope (3% change in calculated value when Az/Ax is varied by £0.005)
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