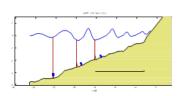
Challenges and Progress in Cross-Shore Transport

Brad Johnson

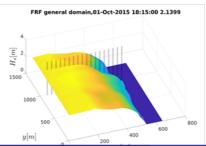
July 26, 2022

- Why is this so difficult?
- New method for computation of sand transport



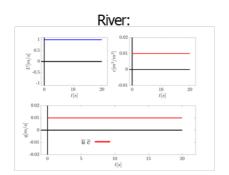
Cross-shore July 26, 2022

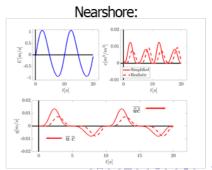
Scales of Nearshore Modeling


Phase-resolving, Wave Model

- Resolves η, u, v, p
- Accurate predictions of time-dependent variations
- Time scale hours, length scale 1 km
- To date, poor skill in predictions of coastal morphology

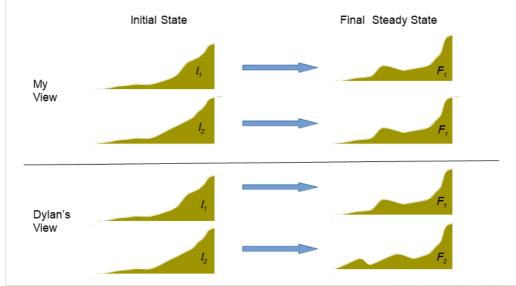
Phase-Averaged, Current Model


- Resolves η , u, v, σ_{η} , σ_{u} , etc
- Accurate predictions of nearshore statistics Undertow, Longshore cur., Rip
- Time scale days, length scale 10 km
- Poor skill in predictions of coastal morphology



Wave/Current Transport

$$q_s = uc \quad uc + \overline{u}\overline{c}$$


- Bedload USUALLY transports sand in wave direction, on average.
- Relatively accurate predictions of steady offshore-directed currents
- ullet Wave-related phase-coupled nonzero $ar{u}ar{c}$ reduces steady contribution
- Time-dependent contribution is unknown in magnitude and phasing.

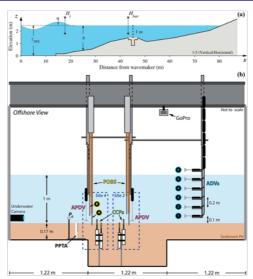
<u>Cross-shore</u> July 26, 2022 3 / 19

Hydro/wave/morphology interaction

July 26, 2022

New Modeling Strategy

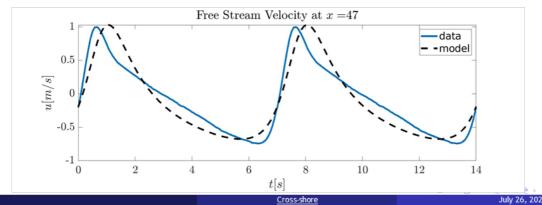
Is it hopeless?


Maybe, but let's attempt a hybrid approach where numerically-derived closures are utilized in the phase-averaged system

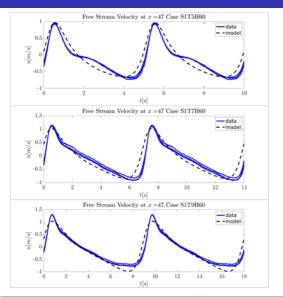
- Deploy phase-averaged model :h, H_s, (U, V)
- Estimate skew, asym from U_r(ka, kh) → r, φ
- Invent time series of free-stream velocity
- Estimate velocity in the boundary layer
 - Solve BL approximations for synthetic free-stream time-series where first 1 or 2 wave periods have nonphysical transients.
 - Cheat and use interpolated-matching BL velocity
- Numerically evolve sed conc field based on coupled two-layer model
- With estimates of c, u, v, predict transport

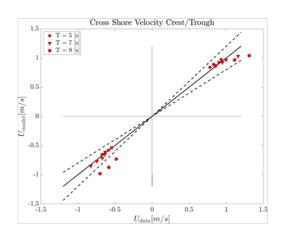
BARSED experiments

- OSU tank, 2015
- Wave packets, little bed change
- Direct measurement of free-surface and water-column velocity
- Sed concentration measured over the water column, including bedload layer
- First comprehensive set of direct estimates for transport including bedload



<u>Cross-shore</u> July 26, 2022 6 / 19

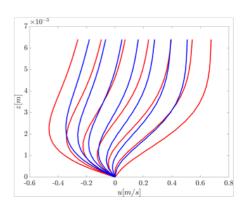

Free-Stream Velocity Model (Skip the wave height)


Initial execution of phase-averaged model provides free-surface and velocity statistics. Estimate skew and asymmetry from Abreu et al. (2010) $U_r \rightarrow r, \varphi$

$$u_{\infty} = U_{w} f \frac{\sin(-\frac{x}{0}k \, dx + \omega t) + \frac{r \sin \varphi}{1 + 1 - r^{2}}}{1 - r \cos(-\frac{x}{0}k \, dx + \omega t + \varphi)}$$

Model/data Free stream velocity

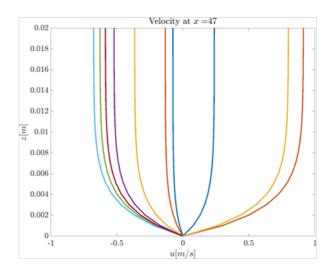
Alternative: Boundary Layer Model

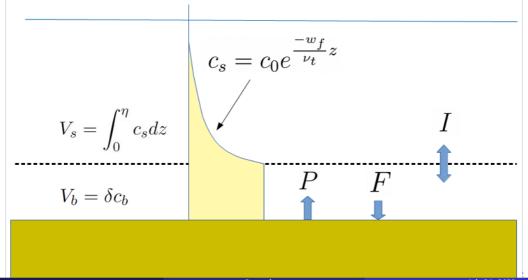

$$\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{1}{\rho} \frac{\partial \tau}{\partial z}$$

is easily recast

$$\frac{\partial u - u_{\infty}}{\partial t} = \frac{\partial}{\partial z} \quad v \frac{\partial u}{\partial z}$$

or


$$\frac{\partial u_{\delta}}{\partial t} = \frac{\partial}{\partial z} \quad v \frac{\partial u_{\delta}}{\partial z}$$


Alternative: Idealized Boundary Layer Model

Simplified computation based on match at estimated boundary layer thickness

$$u(z) = u_{\infty}(1 - e^{-kz})$$

Conceptual Sediment Model

৺) ৭ (১ 11 / 19

<u>re</u> July 26, 2022

Sediment Model Boundary Specification

Sediment entrainment from bed begins with defining an equilibrium concentration:

$$V_{be} = \frac{b_1}{\rho g(s-1)} \tau'$$

and pickup function is cast to have correct time-steady asmyptote

$$P = \frac{\underline{w}_f}{\delta} V_{be}$$

Fallout is proportional to concentration

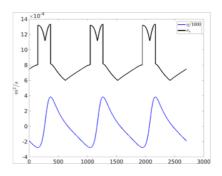
$$F = c_b w_f = \frac{w_f}{\delta} V_b$$

Interchange has positive vertical gradient diffusion and negative fallout

$$I = -v_s \frac{\partial c}{\partial z} - c_s w_f$$

(D) (B) (E) (E) (O)

shore July 26, 2022


Sediment Diffusivity

Empirical Length scale and Velocity scale:

$$v_s = v_t = c_0 + c_1 \delta \left(\frac{D_f}{\rho}\right)^{1/3} + c_2 h \left(\frac{\overline{D_b}(\eta > 0)}{\rho}\right)^{1/3}$$

Diffusive mixing derives from

- waves,
- bottom shear dissipation,
- breaking dissipation

Sediment Model

Simplified description of sediment, based on two coupled layers:

Suspended Layer: Exponential decay in height

$$V_s = \int_0^{\eta} c_s dz$$
; $\left[\frac{\partial V_S}{\partial t} + u \frac{\partial V_S}{\partial x} = I \right]$

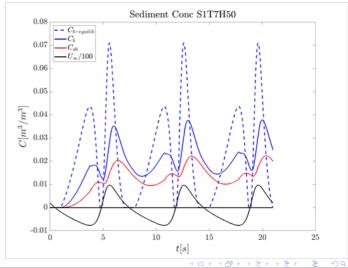
where

$$I = -v_s \frac{\partial c}{\partial z} - w_f c_b$$

Bedload Layer: Constant or well-mixed

$$V_b = \delta c_b$$
; $\left[\frac{\partial V_B}{\partial t} + u \frac{\partial V_B}{\partial x} = P - F - I \right]$

where

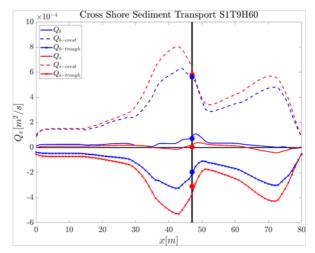

$$P = f(\tau_b) \qquad F = c_b w_f$$

Cross-shore July 26, 2022 14 / 19

Time-evolution of sediment concentration

Note

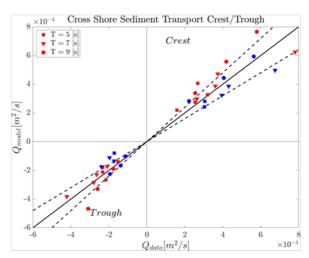
- Cold start
- All pde's integrated in time to 1st order with upwinding
- Crest/trough equilibrium conc differences derive mostly from skewness
- Lags in U³_∞ and c_b evolve naturally–no guessing phase shift
- Additional lags in c_{s0}



-shore July 26, 2022 15

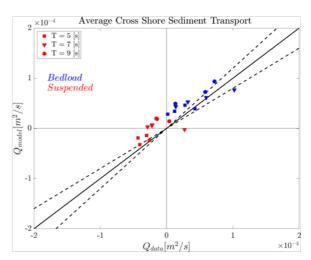
Sediment transport

Note


- Cross-shore distribution of crest/trough transport
- Data are provided for one test case
- Bedload is everywhere onshore
- Suspended load is on/off

Sediment transport under Trough/Crest

Note


- ullet Crest/Trough based on Pos/Neg U_{∞}
- Provides some estimate of gross transport accuracy
- v_s are tailored to these data
- Skewness included, but not asymmetry: P(S(d²), A(d³))

Phase-Averaged Sediment Transport

Note

- Averaged transport is O(10) smaller than gross transport
- Bedload estimates are suitably accurate
- Suspended transport data are surprising
- Error in suspended transport may be due inaccurate mean velocity

New Modeling Strategy

The hybrid approach affords opportunities:

- Process-based estimates for the wave-related transport
- Incorporate myriad other processes, e.g. impact of bed slope where $G_s \bar{q} = \overline{G_s q}$
- Possibility to incorporate the conservation of tke
- New closure for rad stress –a different subject

Next Steps-carefully: Greater complexity does not necessarily lead to greater accuracy and generality is a challenge

- Complete comparisons to other BARSED, HYDRALAB data.
- Compare modeled transport to LSTF
- Compare predicted wave shape to field data

ore July 26, 2022