RAPID SCREENING OF PARTIALLY SUBMERGED COASTAL STRUCTURE DESIGNS USING FUNWAVE

COASTAL INLETS RESEARCH PROGRAM
TECHNICAL DISCUSSION
22 JUNE 2021

Marissa J. Torres (CRREL)
Marissa.J.Torres@erdc.dren.mil

Matt Malej (CHL)
Michael-Angelo Y. Lam (CHL)
Outline

- Problem statement
- Impacts & benefits
- Objectives, approach, & accomplishments
 - Scope
 - Simulation matrix
 - Preliminary results
- Tech transfer initiative
- Future work
Problem Statement

- Coastal structures (e.g., breakwaters and jetties) are vital for navigation, shore protection, and beach stabilization.

- There is rarely enough time, money, and resources to execute screening of structure design alternatives or robust assessment of wave-structure interactions.

- Connect coastal engineering applications to the phase-resolving, nearshore numerical wave modeling environment.
Impact & Benefit

- Empowering, educating, and enhancing the skillsets of novice and intermediate users to implement complex, nonlinear numerical wave models

- Facilitate rapid screening of design alternatives for efficient and effective decision-making under environmental uncertainty

- Save time, money, and resources on SMART planning initiatives

PDT Members:

- Hans (Rod) Moritz, NWP
- Matthew Wesley, SPL
- Rachel Malburg, LRE
- Jessica Podoski, POH
- Andrew (Drew) Condon, SAJ
- Patrick Kerr, SWG
Objective & Approach

Objective: To enhance the transition of structure design materials and their respective porosity (transmission), reflection, and absorption properties directly and seamlessly into a phase-resolving nearshore wave modelling framework.

Technical approach:
- Outline numerical & physical considerations
- Wave responses:
 - Wave reflection and absorption
 - Wave run-up
 - Wave overtopping and transmission
- Overall guidance – Value Added:
 - Amount of wave energy dissipation provided by the structure
 - Wave run-up exceedance probability
 - Wave overtopping rate in extreme scenarios

<table>
<thead>
<tr>
<th>Structure Design Properties</th>
<th>Wave Climate Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (freeboard)</td>
<td>Wave Type</td>
</tr>
<tr>
<td>Emergent</td>
<td>Regular (Monochromatic)</td>
</tr>
<tr>
<td>Submerged</td>
<td>Irregular (TMA)</td>
</tr>
<tr>
<td>Surface</td>
<td>Dimension</td>
</tr>
<tr>
<td>Emergent</td>
<td>1D</td>
</tr>
<tr>
<td>Submerged</td>
<td>2D normal</td>
</tr>
<tr>
<td>Porosity</td>
<td>2D oblique</td>
</tr>
<tr>
<td>Emergent</td>
<td>Smooth</td>
</tr>
<tr>
<td>Submerged</td>
<td>Rough</td>
</tr>
<tr>
<td>Emergent</td>
<td>Impermeable</td>
</tr>
<tr>
<td>Submerged</td>
<td>Permeable</td>
</tr>
</tbody>
</table>

Phase 1 – FY21
Phase 2 – FY22+
Accomplishments & Results

- **Accomplishments:**
 - Development of simulation test bed
 - Connection to the practitioner
 - Visibility in the 2021 RARG
Accomplishments & Results

- **Accomplishments:**
 - Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE
 - Connection to the practitioner
 - Visibility in the 2021 RARG

- **Simulation matrix:**
 - Range of wave periods – $T = 2 - 16 \text{ s}$
 - Range of water depths – $h = 1 - 20 \text{ m}$
 - Range of wave heights – $H = 0.2 - (H/h < 0.8) \text{ m}$
 - Internal wavemaker located at 400 m
 - Flat bottom bathymetry
 - CFL = 0.5

- **Numerical considerations:**
 - Range of validity
 - Finite depth: $\lambda > 2h$ or $kh < \pi$
 - Spatial resolution: points per wavelength
 - $DX < \lambda / 60$
 - Spatial resolution: numerical stability
 - $DX / h > 1 / 15$
Accomplishments & Results

Accomplishments:

- Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE

- Connection to the practitioner

- Visibility in the 2021 RARG

Numerical considerations:

- Range of validity
 - Finite depth: $\lambda > 2h$ or $kh < \pi$

- Spatial resolution: points per wavelength
 - $\Delta X < \lambda / 60$

- Spatial resolution: numerical stability
 - $\Delta X / h > 1 / 15$

Wavelength λ

Regular wave conditions (monochromatic)

$$\omega = \sqrt{gk \cdot \tan h(\frac{kh}{2\pi})}$$

$$\omega = \frac{2\pi}{T}, \quad k = \frac{2\pi}{\lambda}$$

$g = 9.81 \text{ m/s}^2$
Accomplishments & Results

- **Accomplishments:**
 - Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE
 - Connection to the practitioner
 - Visibility in the 2021 RARG

- **Numerical considerations:**
 - Range of validity
 - Finite depth: $\lambda > 2h$ or $kh < \pi$
 - Spatial resolution: points per wavelength
 - $DX < \lambda / 60$
 - Spatial resolution: numerical stability
 - $DX / h > 1 / 15$

Spatial resolution DX

<table>
<thead>
<tr>
<th>DX = $\lambda / 70$</th>
<th>DX / h > $1 / 15$</th>
<th>Regular wave conditions (monochromatic)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accomplishments & Results

- Accomplishments:
 - Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE
 - Connection to the practitioner
 - Visibility in the 2021 RARG

- Nonlinear effects on wave propagation:
 - Where in the domain should I place the wavemaker relative to the coastal structure?
 - How do nonlinearities transform or affect the waves as they propagate in the domain?
 - How much relative energy remains in the peak period?

- Spatial resolution effects on wave energy
Accomplishments & Results

Accomplishments:

- Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE

- Connection to the practitioner

- Visibility in the 2021 RARG

Nonlinear effects on wave propagation:

- Where in the domain should I place the wavemaker relative to the coastal structure?
- How do nonlinearities transform or affect the waves as they propagate in the domain?
- How much relative energy remains in the peak period?

Spatial resolution effects on wave energy
Accomplishments:

- Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE

Nonlinear effects on wave propagation:

- Where in the domain should I place the wavemaker relative to the coastal structure?
- How do nonlinearities transform or affect the waves as they propagate in the domain?
- How much relative energy remains in the peak period?

Spatial resolution effects on wave energy

\[T = 11 \text{ s} \]
\[h = 6 \text{ m} \]
\[H = 0.4 \text{ m} \]
\[DX = \lambda / 70 \]

Regular wave conditions (monochromatic)

- \[T = 11 \text{ s} \]
- \[h = 6 \text{ m} \]
- \[H = 0.4 \text{ m} \]
- \[DX = \lambda / 70 \]
Accomplishments & Results

Accomplishments:
- Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE
- Connection to the practitioner
- Visibility in the 2021 RARG

Simulation matrix:
- Range of peak wave periods – Tp = 7 - 15 s
 - Peak frequency – fp (1/Tp) = 0.067 - 0.143 Hz
 - Minimum frequency – FreqMin = 0.3 Hz (33.3 s)
 - Maximum frequency – FreqMax = 0.03 Hz (3.3 s)
- Range of water depths – h = 1 - 20 m
- Range of wave heights – H = 0.2 - (H/h < 0.8) m

Irregular wave conditions (TMA)
Accomplishments & Results

- **Accomplishments:**
 - Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE
 - Connection to the practitioner
 - Discussion of practical needs for operational use of FUNWAVE
 - Identify gaps in existing documentation and guidance
 - Prioritize needs for immediate capability (SoNs)
 - Visibility in the 2021 RARG

- **Monthly meetings with PDT members**
- **Active participation and engagement**
- **Growing interest in utilizing FUNWAVE on current and future projects:**
 - Jacksonville, FL – wind waves + ship wakes (new)
 - Los Angeles, CA – island of Saipan
 - Detroit, MI – Kenosha Dunes (new)
 - Honolulu, HI – Sunset Beach
 - Buffalo, NY – Harbors and marinas
 - Galveston, TX – ship wakes, scour/erosion
Accomplishments & Results

Accomplishments:

- Development of simulation test bed
 - Meets numerical and physical limitations for modeling in FUNWAVE
 - Presented best practices guidance to PDT
 - Discussion of nonlinear effects on wave energy transformation in FUNWAVE

- Connection to the practitioner
 - Discussion of practical needs for operational use of FUNWAVE
 - Identify gaps in existing documentation and guidance
 - Prioritize needs for immediate capability (SoNs)

Visibility in the 2021 RARG

6 FUNWAVE SoNs in NAV mini-RARG
- Beneficial discussions in SuperRARG
- Cross-cutting objectives

- “Enhanced user guidance and support tools for FUNWAVE-TVD, a Boussinesq-type numerical wave model” - Rachel Malburg
- “Extend FUNWAVE to deep water condition for expanded operational use” – Matthew Wesley
- “Mid and long-term vessel wake impacts on the ecosystem” – Patrick Kerr
- “Deep-draft vessel waves and local infrastructure flooding” – Patrick Kerr
- “Enabling Reliable Evaluation of Wave Interaction with Submerged Structures” – Rod Moritz
- “Variable water level in FUNWAVE for improved operational modeling” – Jessica Podoski
Tech Transfer Initiative

- Wiki updates:
 - Connecting coastal engineering applications to the numerical wave modeling environment

- Tabulated and graphical representation:
 - Simulation test bed (regular & irregular)
 - Wave responses over *impermeable* structure
 - Reflection
 - Runup
 - Overtopping
 - Wave responses over *permeable* structure
 - Transmission
 - Absorption
 - Diffraction

- Support functions in Python Jupyter Notebook
 - 1D applications
 - Bathymetry modifications
 - Breakwater / obstacle files
 - Friction files
 - 2D applications

Phase 1 – FY21
Phase 2 – FY22+

Tech Transfer Initiative

- **Webinars & Tutorials:**
 - Hold presentation / webinar for:
 - PDT District members
 - CIRP
 - CWG
 - Record a series of tutorial videos about guidance on “how-to” use the model on the HPC portal application
 - “How-to” use FUNWAVE for local applications
 - “When-to” use FUNWAVE for your project
 - Other application or project specific tutorials

- **Publications:**
 - ERDC/CRREL Technical Note (in review)
 - “Practical guidance for numerical modeling of nearshore wave-structure interactions in FUNWAVE-TVD”
 - ERDC/CRREL Technical Report (in prep.)
 - Comprehensive discussion of all results
 - Publish date expected in FY22

Phase 1 – FY21
Phase 2 – FY22+
FY21 Outlook & Beyond

- Wave responses with impermeable trapezoidal breakwater structure

<table>
<thead>
<tr>
<th>Structure variables</th>
<th>Wave variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest height</td>
<td>Wave period</td>
</tr>
<tr>
<td>Crest width</td>
<td>Wave height</td>
</tr>
<tr>
<td>Slope</td>
<td>Wave direction</td>
</tr>
<tr>
<td>Roughness</td>
<td>Peak frequency</td>
</tr>
<tr>
<td>“Sponge” layer width</td>
<td>First moment wave height</td>
</tr>
<tr>
<td>“Sponge” layer strength</td>
<td>Water depth*</td>
</tr>
</tbody>
</table>

- Natural next steps:
 - Expansion to 2D simulations
 - Permeable submerged structures
 - Wave transmission
 - Wave absorption
 - Wave diffraction
 - Connection to EuroTop

- Other considerations:
 - Improved HPC Portal GUI visualization and functionality, specifically for coastal structures
 - Fundamental development of model
 - Verification and validation where appropriate

- Deliver tech transfer
 - Wiki updates
 - Video tutorials / webinars
 - Technical report

Phase 1 – FY21
Phase 2 – FY22+

- Slope – m = 1/2 - 1/8
- Crest width – B = 3, 5, 10 m
- Crest height – h_s = 1.1*h - 1.5*h

- 22,680 sims (regular)
FY21 Outlook & Beyond

- **Future considerations:**
 - Alternate structural configurations
 - Berm, toe, step slopes
 - Multiple breakwaters in sequence
 - Expand to jetties, groins, revetments
 - Validation with physical models
 - Existing structure materials (armored rock)
 - Natural and Nature-Based materials (coral reef, oyster bed, etc.)
 - Existing or planned field experiments (Districts)
 - Expanded FUNWAVE capability
 - Sediment transport (accretion, erosion)
 - Tombolo or salient formation
 - Vessel generated waves
 - Expansion of DoD HPC Portal Application
 - Enhanced breakwater / obstacle input
 - Map-based structure placement feature
 - Visualization GUIs

Source: Briggs (2013)
Thank you!

Contact Info:

Marissa.J.Torres@erdc.dren.mil
Marissa.J.Torres2.civ@army.mil (Army Teams)

(603) 646-4283