NEXT-GENERATION VOLUME CHANGE PRELIMINARY PRODUCTS

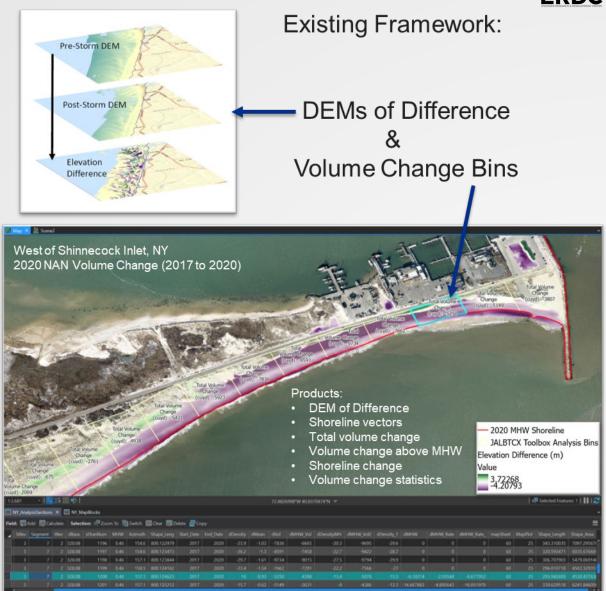
Charlene Sylvester, Scott Spurgeon, Shane Nichols-O'Neill, Brooke Walker, Sam Jackson and Loderay Bracero-Marrero

CIRP Technical Discussion May 13th, 2025

U.S. ARMY US Army Corps of Engineers

NOTE: TANTER GATE NOT INCOME.

U] i]]<u>I</u>_____ ___



PDT members from CHL, SAM, NAP, SAJ, and NAN

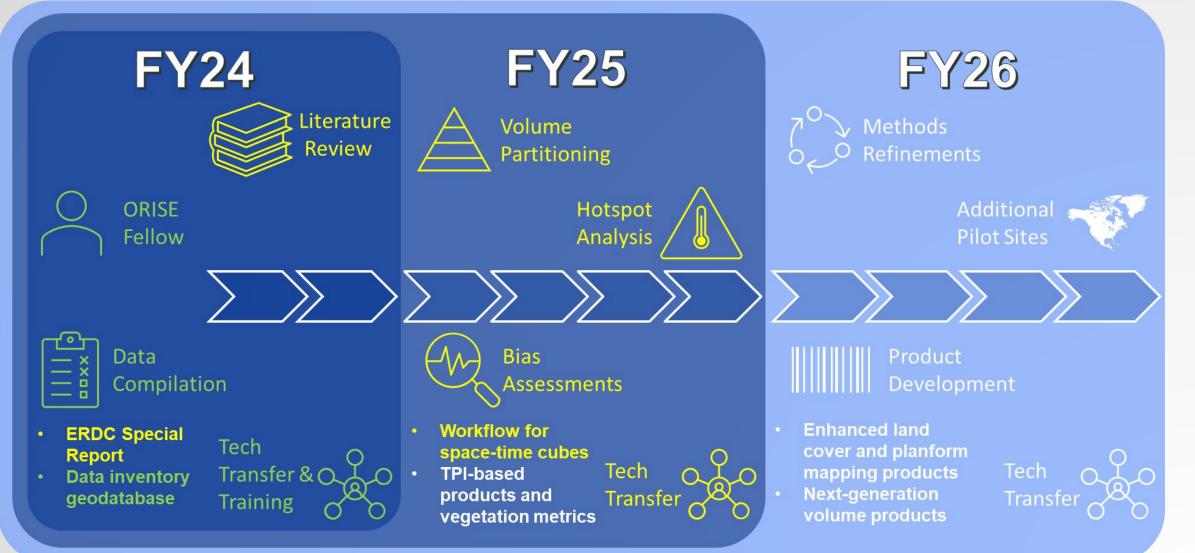
BACKGROUND AND MOTIVATION

- SoN 2024-N-1968: New volume-change tools to improve sediment management
 - USACE operations in Navigation, Flood Risk Management, and Environment require advanced spatio-temporal sediment volume change analysis tools to capture sediment transport during planning, construction, and monitoring phases of projects.
- <u>SoN 2024-N-1969</u>: Incorporating shoaling rates into sediment budget creation to improve sediment management
 - USACE operations in Navigation, Flood Risk Management, and Environment can benefit in efficiency gains from volume change analysis tools to capture sediment transport during planning, construction, and monitoring phases of projects.

- While the existing framework of DEMs of Difference (DoD) and Transect Bins can quantify volumetric change within the fixed in space volume "bins", there are several limitations to this approach:
 - 1. Following storm events, it is often necessary to modify the cross-shore extent of the transect bins. The modification of the spatial extent of transect bins limits direct comparison to previous results.
 - 2. Bathymetric data coverage varies with water clarity and breaking waves at the time of data acquisition. Therefore, the net volume quantities between time periods are not directly comparable where bathymetric data coverage varies.
 - 3. While the movement of sediment may be inferred from the DoD, transport direction of sediment is not currently captured.

RESEARCH AND DEVELOPMENT GOAL

The research team is addressing requirements for a flexible volume change framework leveraging current geomorphic feature extraction and classification R&D together with multidimensional space-time and conformal mapping approaches to improve both the characterization and quantification of volumes for coastal projects in support of sediment budget development, operations and maintenance, and project monitoring.


The project is a three-year effort:

Year 1: Apr – Sep 2024 Year 2: Oct 2025 – Sep 2025 Year 3: Oct 2025 – Sep 2026

PROJECT ROADMAP

LITERATURE REVIEW AND SPACE-TIME CUBE WORKFLOW

LITERATURE REVIEW - IN PROGRESS

Literature Review Purpose

- BLUF: To determine the current state-of-art related to multi-temporal change detection in the coastal environment, identify temporal data requirements for robust change analysis, and identify existing tools for performing change detection analysis.
- 75+ Refereed Pieces of Literature Sourced from 1976-2024

Topics Include:

- Coastal Volume Change Detection Background
- Shoreline Change Method
- Beach Profile Method
- DEM of Difference Method
- Space-Time Cube Method

Errors and Uncertainties

IN REVIEW!

ERDC/CHL TR/SR/CR-23-??	US Army Corps of Engineers® Engineer Research and Development Center
ERDC/CH	Coastal Inlets Research Program (CIRP) Multi-Temporal Change Detection in the Coastal Zone: Literature Review Scott L. Spurgeon, Charlene S. Sylvester, and Samuel S. Jackson Month 2025
Coastal and Hydraulics Laboratory	Approved for public release; distribution is unlimited.

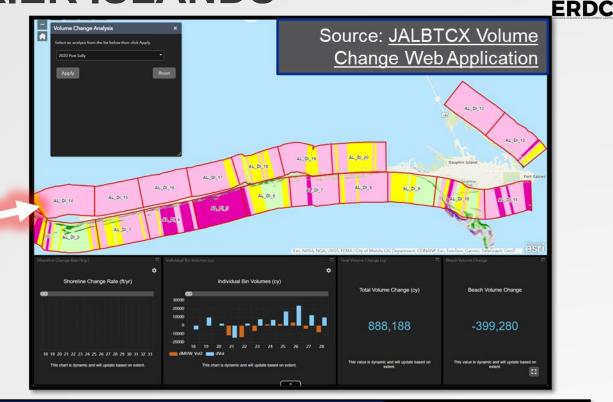
Literature Review Compilation

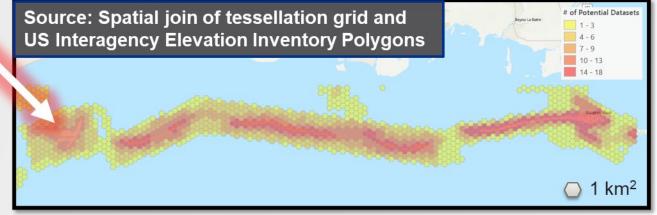
Literature of interest was downloaded, and metadata information was sourced into a tracking spreadsheet that can serve as a deliverable. Rows in the tracking spreadsheet were color-coded based on their inclusion in the Special Report.

Tracked fields included:

- Title
- Authors
- Publish Year
- Abstract
- Summary & Key Points
- Keywords
- Quotes with Page Number
- Category
- Current Status

· · · · · · · · · · · · · · · · · · ·		Year					Search Category for Result (Keywords) 🖵	Current Bin (Dropdow
020 hurricane impact assessment for the		2021	Regional-scale shoreline and beach	Rapid delivery of volume change, shoreline		P.3 "Data and products developed under this	s Difference Raster	Accepted
orthern Gulf of Mexico: Hurricane Sally	Eisemann, J. Wozencraft			change, and beach volume metrics can be	beach volume change,	workflow were delivered incrementally		
Conceptual Model for the Retreat and	Campbell, T. and L. Benedet	2005	This is paper is part of an ongoing effort			P. 2171 "Computation of net volumetric	Coastal Volume Change Analysis Techniques	Accepted
olume Loss of the Louisiana Barrier	Reak Berlande Diese Developie Devia		to develop a dynamic	change rates; Barrier Islands Usage		change requires four steps: (1) Deveopment	5 7 1	
descriptive framework for temporal data		2017	We present the generalized space-time	Space Time Cube Analysis and temporal	STC, 2D visualization of STCs		Space Time Cube Analysis	Accepted
sualizations based on generalized	Archambault, Christophe Hurter, and Molly K. Reif, Jennifer		cube, a descriptive model for	visualization	NCMP, raster products,			
review of U.S. Army Corps of Engineers	M. Wozencraft. Lauren	2012	The U.S. Army Corps of Engineers	Reif et al. (2014) provides an overview of the			Difference Raster	Accepted
rborne coastal mapping in the Great ccounting for uncertainty in DEMs from	Joseph M. Wheaton, James Brasington,		(USACE) Joint Airborne Lidar Bathymetry Repeat topographic surveys are	Coastal mapping by the National Coastal This is referenced by various other papers, so	imagery, feature extraction	P. 136 "From the early 1990s (Lane et al.,		
	Stephen E. Darby and David A. Sear	2009		IS a key publication to reference, perhaps the	fluvial geomorphology;	1994), the morphological method has been	Coastal Volume Change Analysis Uncertainty	Accepted
epeat topographic surveys: improved n analysis of spatiotemporal pattern for	Mo, Chunbao, Dechan Tan, Tingyu Mai,		increasingly becoming more affordable, This study seeks to examine and analyze	is a key publication to reference, pernaps the	fluvial geomorphology;	1994), the morphological method has been		
OIVD-19 in China based on space-time	Chunhua Bei, Jian Qin, Weivi Pang, and	2020		Space-Time Cube Analysis for COVID-19	STC Case Study		Space Time Cube Analysis	Accepted
n Empirical Approach to Beach	Timothy W Kana		the spatial and temporal patterns of This chapter presents an empirical	Coastal planning documentation such Kana et	Profile-based volume change			
ourishment Formulation	Haiging Liu Kaczkowski	2014	approach to beach nourishment	al. (2014) recognize that while movement	guidance document, profile		Coastal Volume Change Analysis Guidance	Accepted
n object-based conceptual framework and			This article presents an object-based	Lidar used for volume changes, pixel method	Erosional and deposition	P. 26: "This method essentially reduces a		
omputational method for representing	Yige Gao, Qiusheng Wu	2010	conceptual framework and numerical	compared to object-based methodology. The		large volume of cell-by-cell elevation	Coastal Volume Change Analysis Techniques	Accepted
pplication of the AMBUR R package for	Chester W. Jackson Jr.a,b,n , Clark R.		The AMBUR (Analyzing Moving	The Analyzing Moving Boundaries using R	Shoreline change, software,	in Be volume of cempyrcen elevation		
patio-temporal analysis of shoreline	Alexander b.c., David M. Bush d	2012	Boundaries Using R) package for the R	(AMBUR) package (Jackson et al. 2012)	user's guide		Coastal Change Detection	Accepted
rcGIS Pro Release 3.3	ESRI	2024	Software	Software	Volume Change Tools		Coastal Volume Change Analysis Techniques	Accepted
rticulating Environmental Sustainability	Wang, Dezhi, Zhenxiu Cao, Minghui Wu, Bo	2024	Conceptually, environmental	The proposed framework characterizes			Contraction Color Application	Accessed
vnamics with Space-Time Cube	Wan, Sifeng Wu, and Quanfa Zhang	2024	sustainability involves maintaining crucial	continuous space-time sequences. The			Space Time Cube Analysis	Accepted
SPRS Positional Accuracy Standards for	ASPRS	2014		Key standards and procedures for computing	Guidance, accuracy			A
gital Geospatial Data	ASPRS	2014	N/A	and reporting accuracy are specified in the	standards		Errors and Uncertainties	Accepted
SPRS Positional Accuracy Standards for	10000			Key standards and procedures for computing	Guidance, accuracy			1
igital Geospatial Data	ASPRS	2023	N/A	and reporting accuracy are specified in the	standards		Errors and Uncertainties	Accepted
limate Change and Anthropogenic Impact		0004	Coastal-transitional areas, including delta					1
n Coastal Environments	Bini, Monica, and Veronica Rossi	2021	plains, strandplains, lagoons,	Discussion of climate change	Climate		Coastal Change Detection	Accepted
	U.S. Army Corps of Engineers Engineering	2002		See Part 5, Chapter 4-1: Engineering Aspects	Guidance, SHOALS, GENESIS,	"Shoreline positions that are accurately		A
oastal Engineering Manual	Research and Development Center	2002	N/A	of Beach Design for discussion on how volume	survey usage in volume	digitized from properly rectified aerial	Coastal Volume Change Analysis Guidance	Accepted
oastal Wetlands Facing Climate Change	Wu, Wen-ting, Yun-xuan Zhou, and Bo Tian	2017	Under high-intensity anthropogenic	Detailed and long-term change detection of	Coastal wetlands, long-term		Coastal Volume Change Analysis	Accepted
nd Anthropogenic Activities: A Remote	wu, wen-ting, run-xuan zhou, and Bo Han	2017	activities and accelerated climate change	coastal wetlands is mapped. Effects of	change, anthropogenic		Coastal volume Change Analysis	Accepted
omparison of two open-source tools for	Apostolopoulos, Dionysios N., and	2021	Coastal environments are under	Apostolopoulos and Nikolakopoulos (2021)	DSAS, AMBUR, shoreline		Coastal Volume Change Analysis Techniques	Accepted
iachronic shoreline monitoring: a case	Konstantinos G. Nikolakopoulos	2021	successive physical and	compare the shoreline change analysis abilities	extraction, comparison of		Coastal volume change Analysis Techniques	Accepted
ontrol and Topographic Surveying	USACE	2007	Guidance and Documentation	Guidance and Documentation			Coastal Volume Change Analysis Guidance	Accepted
orrelation between nearshore reef				Harris, Samuelson, and Damon (2003) show				
tructure and shoreline changes in Indian	Harris, L. E., N. Samuelson, and M. Damon.	2003		alongshore changes in shoreline position occur	Shoreline position change		Coastal Volume Change Analysis	Accepted
ata Cubes for Earth System Research:	Montero Loaiza, David, Guido Kraemer,		Recent advancements in Earth system	Space-Time Cube Analysis, Earth System				1
hallenges Ahead	Anca Anghelea, Cesar Aybar Camacho,	2023	science have been marked by the	Science, Documentation			Space Time Cube Analysis	Accepted
		2012	A key aspect of geomorphological	Introduction of the DEM of Difference	DEM of Difference (DoD),	P. 1 "The focus of the chapter is on	Difference Denter	Accessed
EMs of Difference	Richard David Williams	2012	enquiry is concerned with quantitatively	method. References that DoD is a 2.5D	Deposition, Erosion, Error,	producing DoDs in situations that are	Difference Raster	Accepted
igital Shoreline Analysis System (DSAS)	Emily A. Himmelstoss, Rachel E.	2021	The Digital Shoreline Analysis System	The Digital Shoreline Analysis System (DSAS)	Shoreline change, software,		Constal Valuese Change Applicate Techniques	A
ersion 5.1 User Guide	Henderson, Meredith G. Kratzmann, and	2021	version 5 software is an add-in to Esri	(Himmelstross et al. 2021) is an add-in to ESRI			Coastal Volume Change Analysis Techniques	Accepted
iscussion of: Theuerkauf, EJ and	Rudolph, Greg L.	2012	Theuerkauf and Rodriguez (2012) utilized	See Theuerkauf and Rodriguez (2012) - this is			Coastal Volume Change Analysis Techniques	Accepted
odriguez, AB, 2012. Impacts of Transect	1,7 8	2012	terrestrial laser scanning data obtained a		Theuerkauf and Rodriguez		Coastal volume change Analysis rechniques	Accepted
uring Nearshore Event Vegetation	Sam S. Jackson, Christina L. Saltus, and	2023	Monitoring and modeling of coastal	Jackson et al. (2023) introduces the During	DUNEVEG, vegetation,		Coastal Vegetation Extraction and Monitoring	Accepted
radation (DUNEVEG): Geospatial Tools for	Glenn M. Suir	2025	vegetation and ecosystems are major	Nearshore Event Vegetation Gradation	NCMP, hyperspectral		coastal vegetation extraction and Monitoring	Accepted
nerging Hot Spot Analysis (Space Time	ESBI	2024	Documentation	Tool Documentation	STC Tools		Coastal Volume Change Analysis Techniques	Accepted
ttern Mining)—ArcGIS Pro	LONI	2024		roor bocumentation	STC TOOIS		Coastal volume change Analysis rechniques	Accepted
rosional hot spots	Dean, R. G., Liotta, R., and Simón, G.	1999	Erosional hotspots, referenced by Kraus and Galgano	Erosional Hotspots	EHS		Space Time Cube Analysis	Accepted
stimation of Shoreline Position and	Stockdon, Hilary F., Asbury H. Sallenger Jr.,		A method has been developed for	Estimating shoreline position from lidar,	shoreline change, shoreline			
hange Using Airborne Topographic Lidar	Jeffrey H. List, and Rob A. Holman	2002	estimating shoreline position from	shoreline change	detection and mapping, lidar		Coastal Volume Change Analysis Techniques	Accepted
valuating Proxies for Estimating Subaerial	Theuerkauf, Ethan J. and Antonio B.		Proxies, such as changes in beach profiles		shoreline change, profile	P. 603 (11) "Results from this study show		
each Volume Change Across Increasing	Rodriguez.	2014	and shoreline positions, are commonly	Rodriguez (2014) considered the same study	change, proxies as volume	that changes in beach profiles and shoreline	Coastal Volume Change Analysis Techniques	Accepted
					and the provide as relative			
valuation of Airborne Topographic Lidar	Sallenger, A H, W B Krabill, R N Swift, J	2003	A scanning airborne topographic lidar	Lidar as a use case for volume change	Lidar, DEMs, Volume Change		Coastal Volume Change Analysis	Accepted

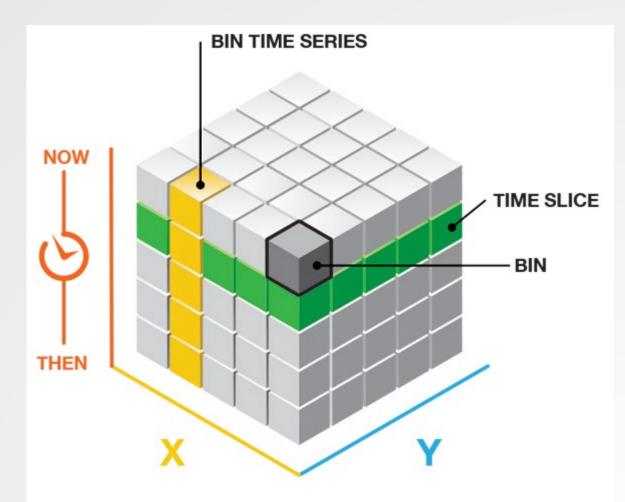

PILOT AREA: MS/AL BARRIER ISLANDS


Project Overview

- Part of Mississippi Coastal Improvements Project (MsCIP)
- Aligns with MS Sediment Budget update (SAM reimbursable project)
- Existing volume change products, advanced landcover and vegetation metrics

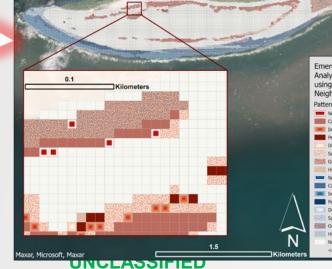
Data Requirements:

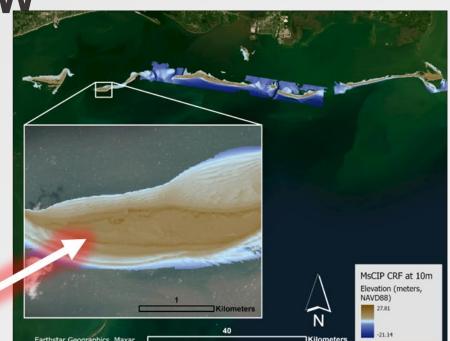
- Spatial resolution supports 3-m DEM (1-m ideal)
- Datasets are available for at least 10 temporallyunique time periods
- Adequate geospatial metadata to support datum transformations

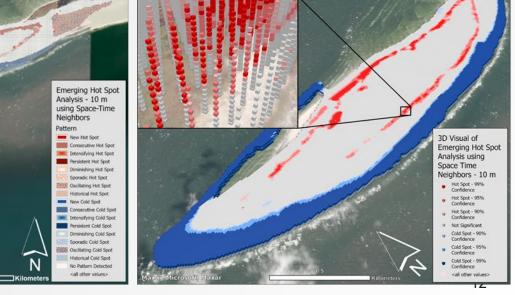


SPACE-TIME CUBES – WHAT ARE THEY?

- Space-Time Cubes (STC) are geostatistical tools that allow for analysis in three dimensions.
- The first two dimensions (horizontal plane) are typically x- and y-coordinates, and the third dimension (vertical axis) is typically time.
- Each x, y, and z point is defined as a "bin" within the Space-Time Cube.
- Space-Time cubes provide statistical analyses methods across the entire domain
 - Hotspot Trend Analysis over time
 - **Spatial Pattern Identification**
 - **Time Series Forecasting**
- ArcGIS Pro has various geoprocessing tools to create, visualize, and analyze space-time cubes.

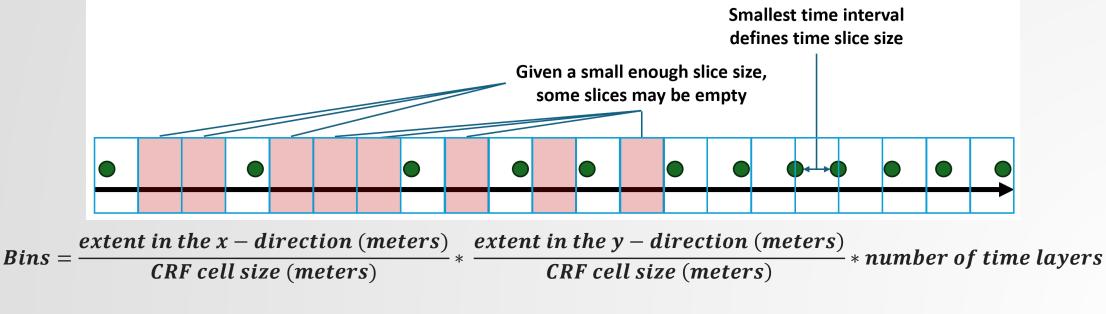

Environmental Systems Research Institute (ESRI). "How Create Space Time Cube Works." Space Time Pattern Mining Toolbox (blog). Accessed March 14, 2025. https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmorecreatecube.htm.




STC WORKFLOW OVERVIEW

ERDC

- **Data Sourcing and Preparation** 1.
- Mosaic Dataset (MDS) & Attribute Field 2. Creation
 - Create MDS
 - Add Rasters to MDS
 - Add "Survey Date" and other metadata fields to MDS attribute table
- 3. Make MDS Multidimensional
- Create Cloud Raster Format (CRF) File 4.
- Create STC from CRF 5.
- Analyze STC 6.
- Visualize STC 7

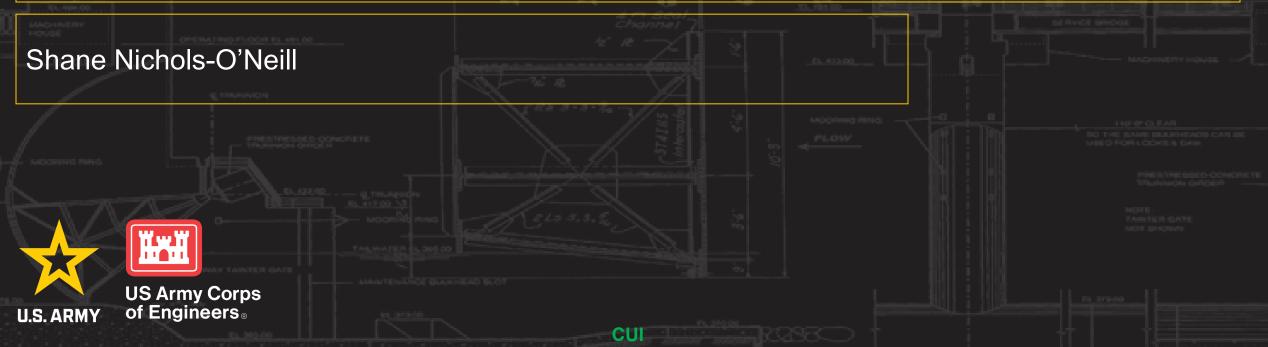


STC BEST PRACTICES

- The finest possible resolution of the STC should be governed by the smallest cell size represented in the 1. input datasets to avoid interpolation artifacts.
- Suggested file formats for Mosaic Datasets are GeoTIFF (.tif) or NetCDF (.nc) files. 2.
- 3. Errors with "Create Space Time Cube from Multidimensional Raster Layer" often arise when creating STCs with lots of bins (either a RastertoNumpyArray Runtime Error or Error 110005). Suggested solution: Increase cell size of input multidimensional raster, reduce extent of AOI, reduce number of input datasets, and/or increase the time step interval to reduce number of time layers.
- STCs require 10 individual time steps. If the data is not collected at regular intervals, the time step interval for 4. the multidimensional raster and STC will be defined by the smallest time gap between datasets.

NEXT STEPS – SPACE TIME CUBES

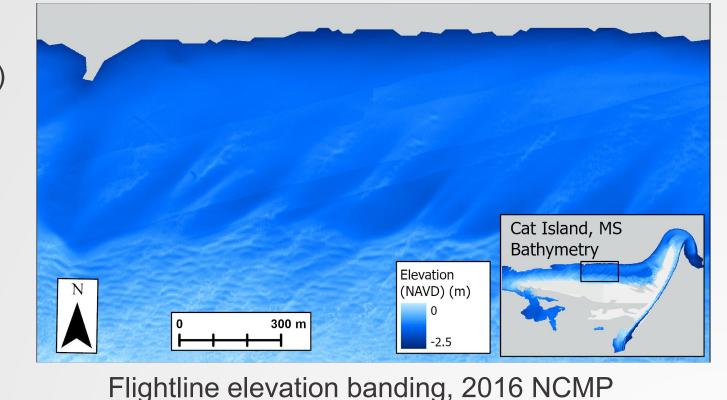
- Technical Note
- Best Practices
 - "Soft Cap" of number of bins vs. absolute cap
- Products & Analysis
 - Emerging Hot Spot Analysis
 - Space-Time Pattern Toolbox
 - Time Series Forecasting Toolbox
 - Others?
- Alternative Testing
 - Tools outside of ESRI?
 - NetCDF vs. CRF vs. others?


approved for public release; distribution is unlim

ASSESSMENT OF BIAS IN DEMS OF DIFFERENCE

ELEVATION BIAS

16


Biases exist in DoD-based change detection products

- Lidar Measurements (Glennie, 2007)
- Effects of Bathymetry (Guenther, 1985)
- DEM creation (Williams, 2012)

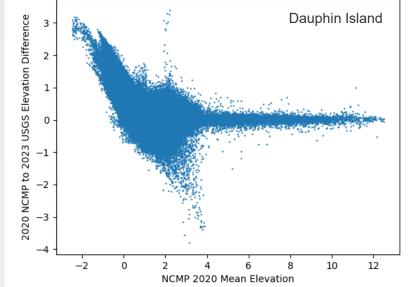
Elevation bias may be significant enough to affect elevation-based analysis

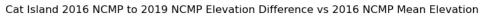
- Change detection
- Volume change estimates
- Habitat suitability

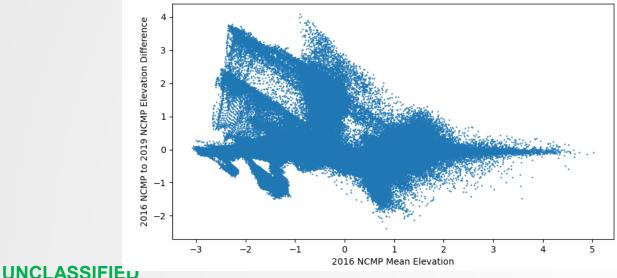
Goal: Identify and filter elevation bias in DoD-based change detection products

CIRP

IDENTIFYING ELEVATION BIAS



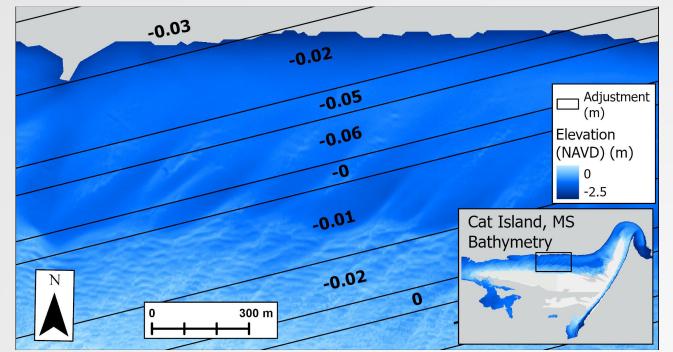

Elevation change patterns examined based on initial conditions


- Plot shape helps to differentiate elevation change results
- physical processes
- human intervention
- measurement/processing error

Potential bias sources

- GPS accuracy
- Water depth-bathymetric lidar calibration

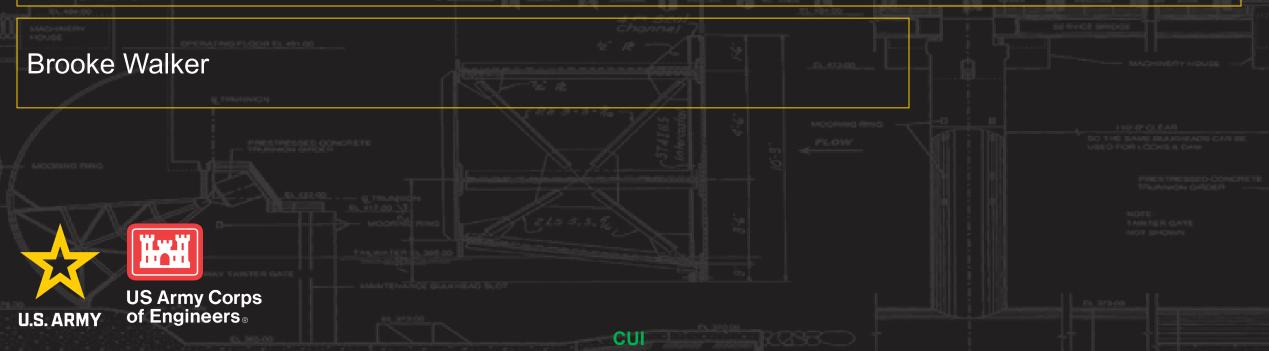
2020 NCMP to 2023 USGS Elevation Difference vs 2020 NCMP Elevation


ELEVATION BIAS: CAT ISLAND, MS

Cat Island bathymetric banding related to Lidar flight lines

Solution: provide elevation adjustment for each flight line zone based on an individual mean elevation difference

Moving Forward: identify and apply different techniques to quantify and limit spatially distributed error


Zonal mean elevation difference adjustment

Cat Island, MS Bathymetry Volume Change 2016-2019					
Volume Change, no adjustment	In progress				
Volume Change, adjusted	In progress				

VOLUME CHANGE: SETTING THE STAGE FOR A FLEXIBLE FRAMEWORK

VOLUME CHANGE – 2018-2020

Data Sets:

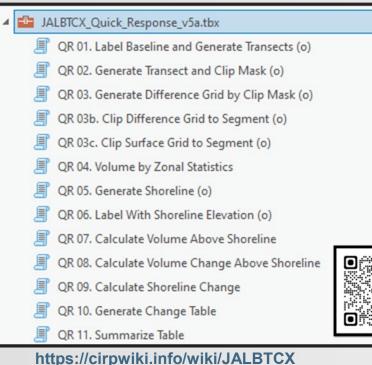
- 2020 USACE NCMP Post Sally Topobathy Lidar DEM: Gulf Coast
 - Collected September-October 2020
 - Mississippi's Ship Island through St. Vincent Island, FL. Also includes shoreline from Biloxi through Pascagoula.
- 2018 USGS Topobathy Lidar: Gulf Coast Islands
 - Collected October-November 2018
 - Dauphin Island and Breton NWR.
- 2016 USACE NCMP Topobathy Lidar DEM: Gulf Coast
 - Collected July-October 2016
 - Covers Barrier Islands from Texas through Destin, FL.
- 2011 USACE NCMP Topobathy Lidar DEM: Gulf Coast
 - Collected May/June 2011
 - Covers the Barrier Islands from Louisiana's
 - Breton NWR to Alabama's Dauphin Island.

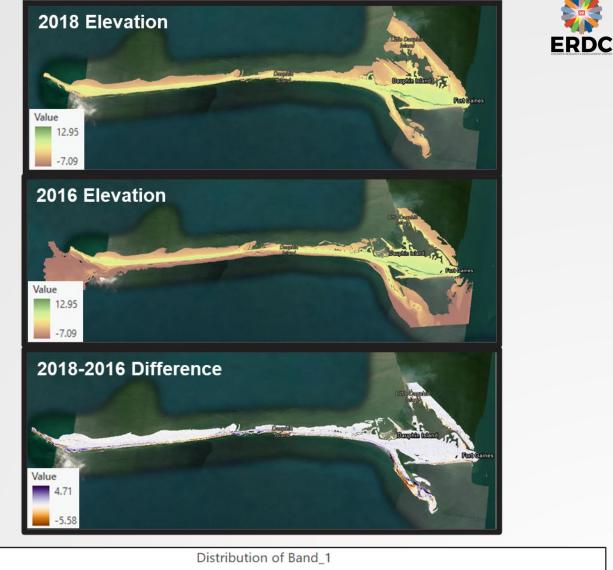
-1.7 -1.4 -1.1 -0.8 -0.4 -0.1 0.2

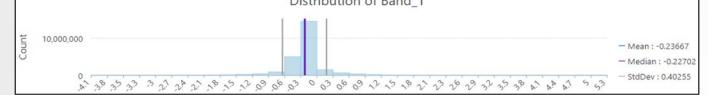
UNCLASSIFIED

0.5 0.9 1.2 1.5 1.8 2.1 2.5 2.8 3.1

StdDev: 0.367



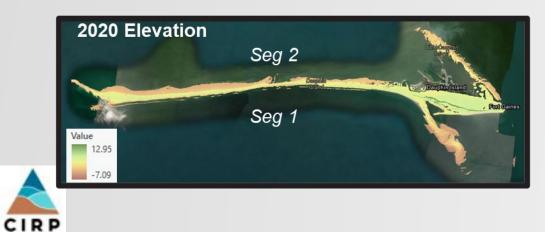

CIRP

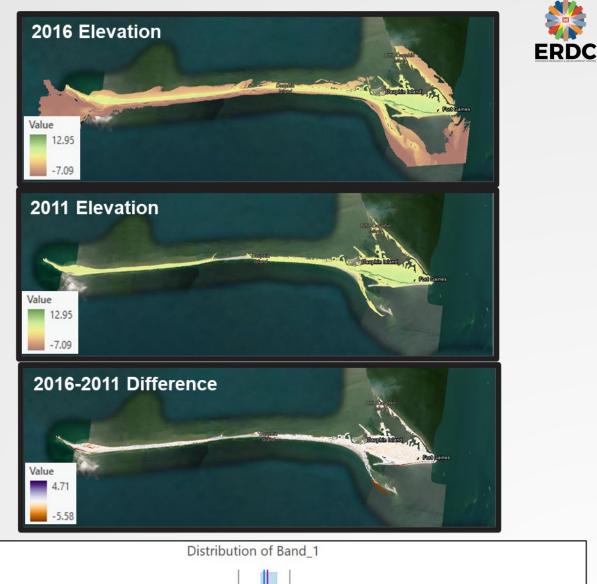

VOLUME CHANGE – 2016-2018

JALBTCX Quick Response Toolbox:

- Leveraged existing 2020 Post-Sally volume change bins to begin workflow at Step QR 04.
- Testing of companion "Multi-Dataset Toolbox"
- Sensitivity testing of bin geometry on volume quantities (Modifiable Areal Unit Problem (Openshaw 1984))

Herei


VOLUME CHANGE – 2011-2016

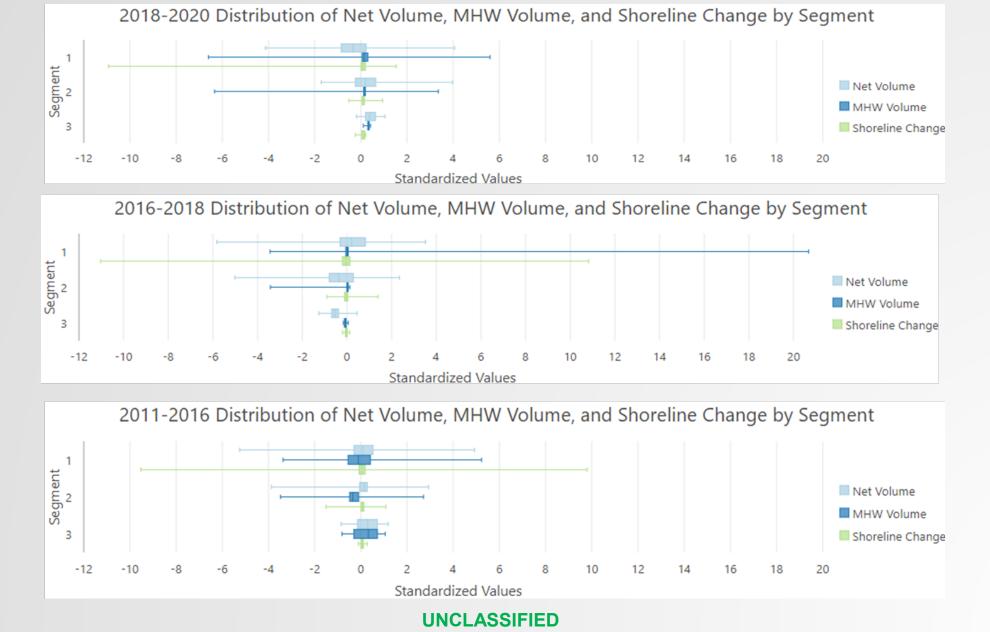

Cell by cell (1-meter by 1-meter) comparison of before and after elevation values using

$$Z_{difference} = Z_{after} - Z_{before}$$

where $Z_{difference}$ is the change in elevation for elevations surveyed later, Z_{after} , and earlier, Z_{before}

Summation of these cell differences yields volumes (Wheaton et al. 2010; Williams 2012).

5,000,000 StdDev: 0.4879

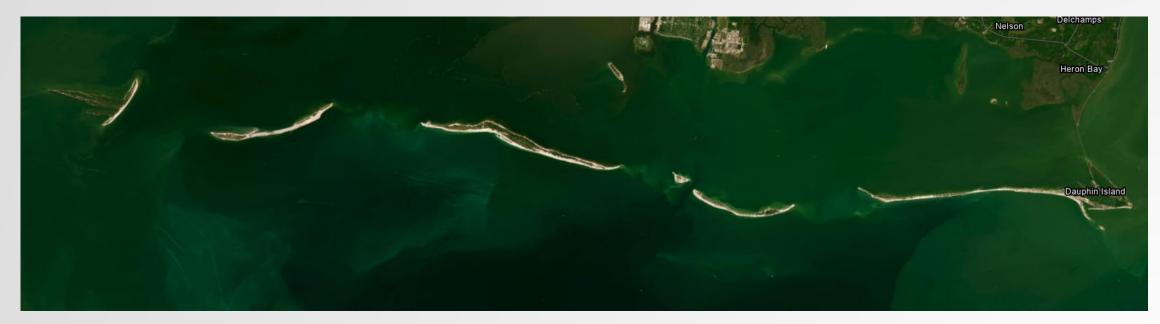

UNCLASSIFIED

UNCLASSIFIED

: 0.0525

VOLUME CHANGE COMPARISON

CIRP





- Modify volume bin geometry for full coverage and compare to existing bin volumes.
- Apply bias filtering techniques with Shane.
- Recalculate volumes without bias.
- Analysis will cover from Dauphin Island to Cat Island.

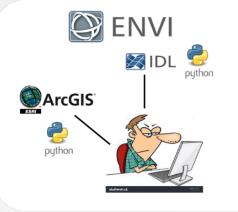
VOLUME PARTITIONING: DEVELOPMENT OF DUNE VEGETATION PRODUCTS

			energia de la companya de	والمكالي والمروا والمحالي والمحالي والمراكلة
MAGHINERY HOUSE				
Sam Ja	ackson			
l'acconance	CR5522523523529-00474			
$\mathbf{\mathbf{x}}$				
U.S. ARMY	US Army Corps of Engineers₀			

LANDCOVER AND DUNEVEG PRODUCTS

The Dune Vegetation (DUNEVEG) tool is a Geospatial Toolbox for remote vegetation extraction from NCMP Hyperspectral Imagery and Lidar

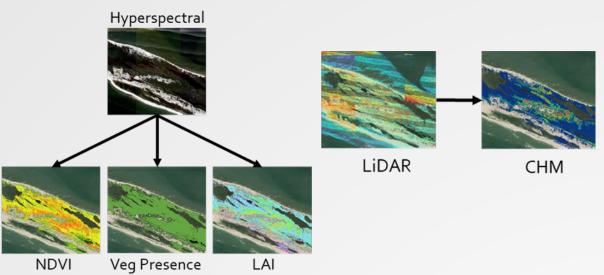
Extracted Metrics include the following:


- Normalized Difference Vegetation Index (NDVI)
- Vegetation Cover (Presence/Absence)
- Vegetation Density Estimate (inferred biomass calculated from NDVI threshold)
- Leaf Area Index (LAI) ٠
- Canopy Height Model (CHM)

CIRP (next-gen) NCMP datasets analyzed to date:

- 2020 Post-Sally MSCIP (MS Coastal Improvements Program)
- 2019 MS Barrier Islands
- **2016 MS MSCIP**

Software requirements: Windows 10, ENVI integration with ArcGIS Pro, Python, ENVIpy ENVI analytics, Band Math Algorithms, ArcGIS Pro Geoprocessing, Spatial Analyst Extension



Source:L3Harris Geospatial https://www.harrisgeospatial.com

LANDCOVER AND DUNEVEG PUBLICATIONS

List of Publications:

- Jackson, S.S.; Saltus, C.L.; Reif, M.K., and Suir, G.M. (2023). *During Nearshore Event Vegetation Gradation (DUNEVEG): Geospatial Tools for Automating Remote Vegetation Extraction.* USACE ERDC/EL SR-23-5. Vicksburg, MS: US Army Engineer Research and Development Center.
- Suir, G.M.; Jackson, S.S.; Saltus, C.L., and Reif. M.K. (2023). Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data. *Remote Sensing*, 15(8): 2098.

UNCLASSIFIED

ERDC

CUI

CANTICIPATED MILESTONES AND PRODUCTS

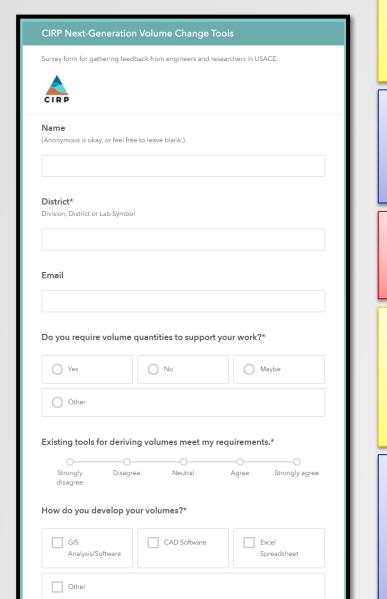
U.S. ARMY

FY25

- Volume Partitioning
 - Relative Relief, Geomorphons, and Vegetation Metrics for Pilot Sites
 - Segmented DEMs and Volumes for Pilot Sites
 - TN: DEM Segmentation Using Regional Datasets
- Hot Spot Analysis
 - ArcGIS Pro Workflow and Space-Time Cube Products for Pilot Sites
 - TN: Workflows for Creating Space Time Cubes from DEM Datasets
- Investigate Methods to Address Bias
 - Calculation of Bias Metrics and Anomaly Surfaces for Pilot Sites
 - Application of methods reported in the literature

FY26

- Refinement of Volume Partitioning
 - Enhanced Landcover Derivative Products for Pilot Sites
 - Proof-of-Concept Demonstration of Using Enhanced Landcover Derivative Products in SBAS
 - TN: Use of Segmented Volumes in SBAS: A Case Study
- Refinement of Hot Spot Analysis
 - TN/JA: Parameter evaluation for Hot Spot Analysis using ArcGIS Pro
 - Planform Mapping Products for Pilot Sites
- Refinement of Methods to Address Bias
 - ERDC Publication or Journal Article on Developing Uncertainty Estimates for Volumes



Have thoughts? Challenges? Uses? Requirements? Tools?

- Feedback form
- Public data collection
- No login required

https://arcg.is/Tr5v50

"Volumes play a critical role in the navigation and beach nourishment projects from all project phases from feasibility to O&M. Without volumes, it is impossible to design projects or maintain them. Volumes are used during design, development of plans and specs, and during emergency post-storm evaluations."

"Ability to compare baseline conditions as both rates and raw volume changes while also being able to include storm impacts, management changes and actions. So, to include them in my analysis but separate them."

"Sediment budget analysis of tidal inlets and coastal barrier islands. Planning Beneficial Use and DMMPs for coastal Nav projects."

"There is a variety of tools being employed in our district and no consistency. A set of tools that are easy to use and to replicate the results would be ideal. This was when projects shift, or staff retire new engineers can recreate the old analysis."

"For navigation, capacities for placing channel sediments; understanding sediment budgets.

For CSRM, renourishment quantities and locations; tracking hot spot causes and dynamics; sediment budgets For Emergency Management, post-storm calculations that help inform response for emergency supplemental repairs."

QUESTIONS?

PI Team: Charlene Sylvester (Charlene.S.Sylvester@usace.army.mil) Scott Spurgeon (Scott.L.Spurgeon@usace.army.mil) Sam Jackson (Samuel.S.Jackson@usace.army.mil) Loderay Bracero Marrero (Loderay.I.BraceroMarrero@usace.army.mil)

SO THE EAVE BULKHEADS CAN USED FOR LOCKS & DAM

> PRESTRESSED-CONCRETE TRUNNON GROEP

NOTE: LANCER GATE NOT SHONN

US Army Corps U.S. ARMY of Engineers®