

### APPLICATIONS OF THE CSAT TO EVALUATE DEPTH RESTRICTIONS AT SELECTED ENTRANCE CHANNELS

#### COASTAL NAVIGATION PORTFOLIO MANAGEMENT

**Dr. Michael Hartman** Nicholas Lenssen, Nicholas Olsen, Dr. Rachel Bain, Dr. Ned Mitchell, Lauren Dunkin

#### District PDT Members

UNCLASSIFIED

Andrew Keith (SAM), Jeff Swallow (NAO) Dr. Shahidul Islam (SWG)

## **COASTAL INLETS RESEARCH PROGRAM**

FY20 IN PROGRESS REVIEW

### Mike Ott Eddie Wiggins

HQ Navigation Business Technical Director Line Manager

### Katherine Brutsché

Associate Technical Director

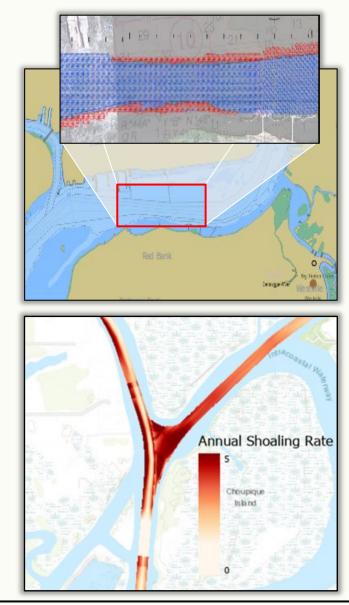


COASTAL & HYDRAULICS

LABORATORY






US Army Corps of Engineers®

# Problem

- Quantitative analysis of navigation channel conditions is critically important to supporting the USACE Navigation Mission area.
- Hydrographic survey data maintained by eHydro can be used to answer questions like:
  - What is the current channel availability across the USACE portfolio?
  - What are the historic channel infilling rates in the channels?

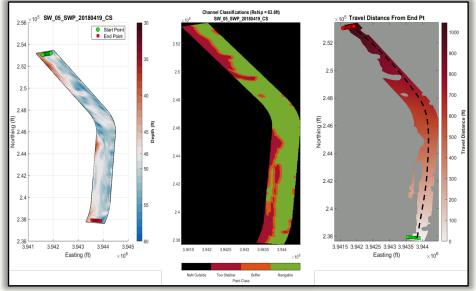
### SoNs:

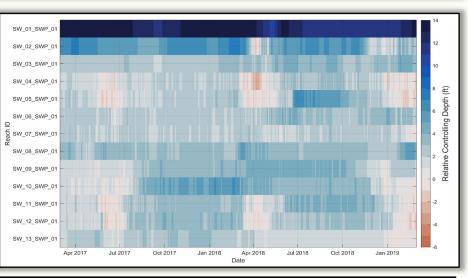
- 2015-N-15 Integration of national and local monitoring datasets to support navigation and operations projects
- 2015-N-34 Incorporating methods to evaluate length of navigation channel required for safe and efficient travel of two way traffic in ship simulations
- 2015-N-40 Reducing the need for dredging



US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

#### UNCLASSIFIED


## **Capability and Strategic Impact Statement**


Shoaling rates can be used to identify hot spots or areas of increased sedimentation, *allowing engineers and scientists to evaluate environmental and human-induced changes on the Navigation portfolio*. Additionally, CSAT shoaling rates and channel navigability supports decision makers efforts to *maximize the use of Operations and Maintenance (O&M) funding* in the Navigation Business Line.

# Approach – Channel Availability

### Channel Availability Analysis:

- Shallowest Observed Depth approach is overly conservative
- Path planning approaches offer some considerations of vessel maneuverability
  - Turning limitations and proximity to shallow depths
- Analysis of three navigation channel systems performed:
  - Southwest Pass
  - Pascagoula Harbor
  - Lower Columbia River
- Developed using COTS software (MATLAB)





US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED

#### UNCLASSIFIED

# **Summary**

### FY20 Major Advances in Capability

- Added Optimized Rapidly-Exploring Random Trees (RRT\*) for controlling depth
- CSATpy includes nearly all features of the original Matlab version
- New CSAT output products to streamline further analysis and integration with other tools

### **FY20 Major Products & Collaborations**

- 1 Journal Article: Navigation Channel Infilling and Availability Trends (ASCE Waterways, Draft)
- 1 TN: CSATpy User Manual
- SAD Meeting
- CSAT Training Workshop (SWG, 6 participants)
- 9 Webinars (CWG, eHydro CoP, LRE, MVN, NAN, NAO, SAM, SPN, SWG)
- 1 CIRP TD: March 2020
- Supported Asset Management and USACE HQ Requests
- Reimbursable Studies:
  - DOTS MVN (Calcasieu River)
  - LRE Lexington Harbor
  - SWP Morphologic Time Series Visualizations

### **FY21 Products/Advances**

- New shoaling forecasting methods
- Improve QA/QC process using Jupyter Notebooks
- Consideration of shoaling outside NCF boundary
- Scale new availability to full USACE portfolio
  - Sensitivity analysis of input parameters

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory