

GENCADE PREDICTION CAPABILITY AND UNCERTAINTY ESTIMATION OF LONG-TERM SHORELINE EVOLUTION

INLET ENGINEERING TOOLBOX

Yan Ding, Richard Styles, Sung-Chan Kim, Rusty Permenter, and Mitchell Brown

District PDT Members

Jeffrey Gilbert, Randall Wise (NAP), Jesse Hayden (DNREC)

CIRP

esearch & Developmer

COASTAL & HYDRAULICS LABORATORY

UNCLASSIFIED

COASTAL INLETS RESEARCH PROGRAM

FY20 IN PROGRESS REVIEW

Mike Ott

HQ Navigation Business Line Manager

Tanya Beck Program Manager

Eddie Wiggins

Technical Director

Katherine Brutsché

Associate Technical Director

Shoaling/Refra Sand Bypa Shoreline Change & Protection tructure Perr Structures (jetty groin, breakwat sea wall) GenCade Barrier Island Dredging GenCade-Based Uncertainty Monte Carlo 100 Mean $- - - +\sigma$ limit ---- -σ limi 10 9.4 Maximum Shoreline Frosion (m

Wave Breaking

US Army Corps of Engineers®

UNCLASSIFIED

.

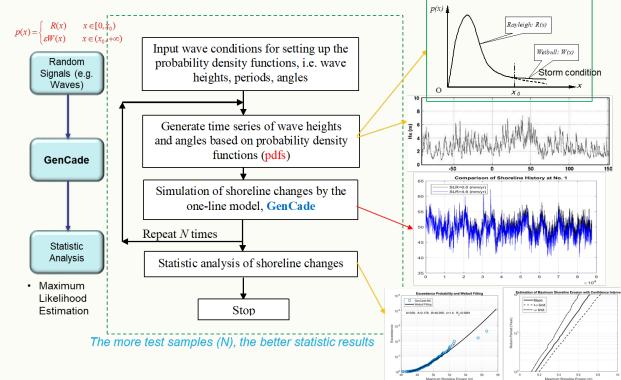

Problem Statement

- Quantifying erosion risk and uncertainty in simulating long-term shoreline changes is an important task in riskbased coastal management practice.
- <u>Uncertainty and randomness exist physical processes</u>: wave, wind, tide, storm, current, sea level change, subsidence, sediment properties and transport, etc.
- <u>Uncertainties due to human errors</u> also exist in protection practices such as volumes, locations, and schedules of sand nourishment, beach fills, and bypass.
- <u>System errors (numerical models generated)</u> can change from coast to coast.

Strategic R&D: Innovation in Sediment Management (Shoreline Erosion)

SoN-2018-FRM-1333 (Understanding and Characterizing Uncertainty in Geotechnical Simulation Models to Support Risk-Informed Decision Making)

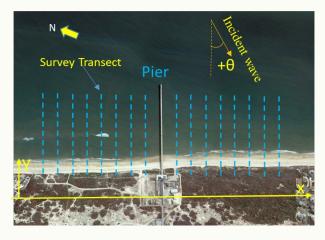
SoN-NFE-1538 (Nearshore Processes Research and Development),

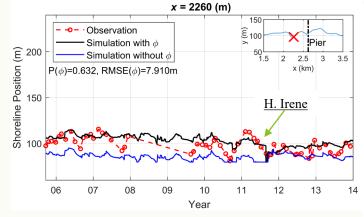


Longitude (deg)

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

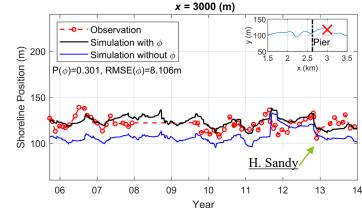
Capability and Strategic Impact Statement


- Quantify model errors by long-term simulation.
- Provide probabilistic shoreline changes solutions driven by physical processes (wave, currents, sediment transport)
- Estimate uncertainty and risk in shoreline changes (sediment transport) by waves and human errors (beach fills) using maximum likelihood analysis
- Has a potential to provide risk-based erosion prediction for planning and management.

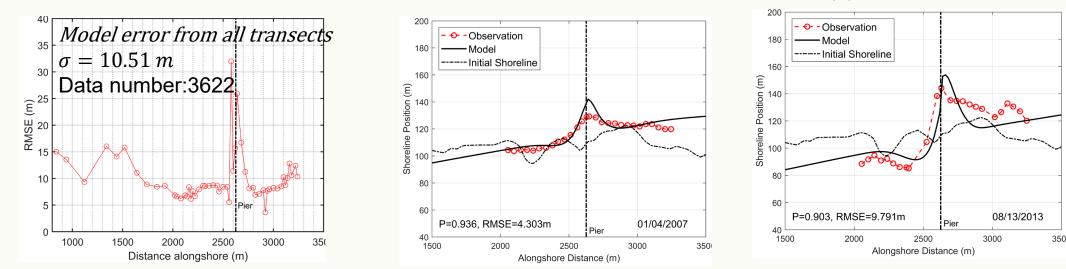

Fig. GenCade-Based Monte Carlo Simulation

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Case 1: Shoreline Evolution Simulation at Duck, NC: System Error by Model Validation

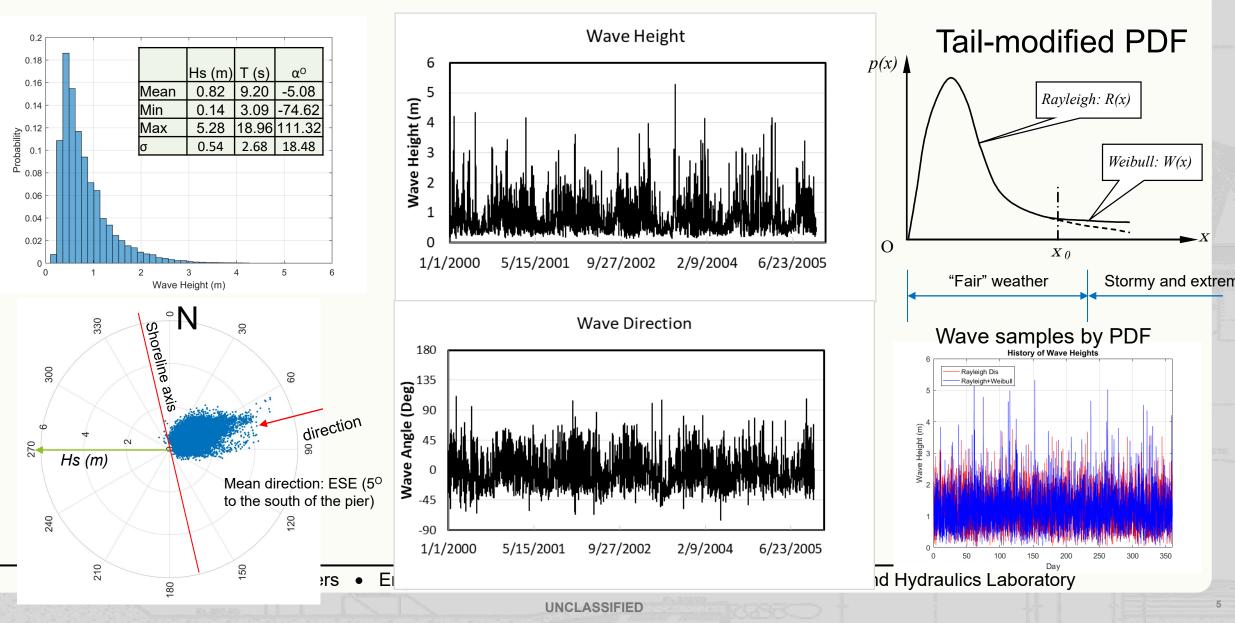


(a) Study site at FRF, Duck, NC

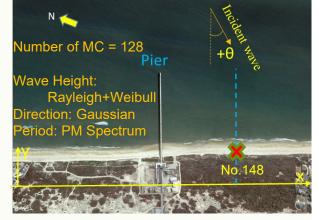


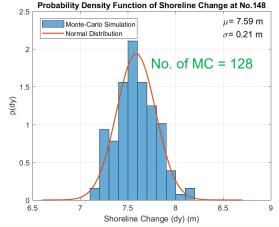
UNCLASSIFIED

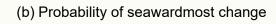
(a) Shoreline Evolution (north shore)

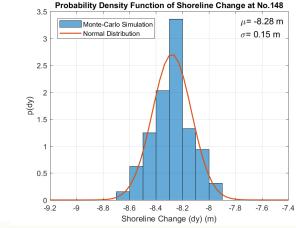


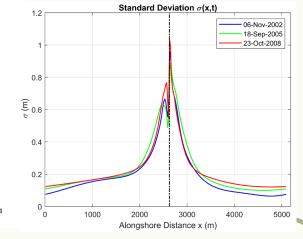
(b) South shore


US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

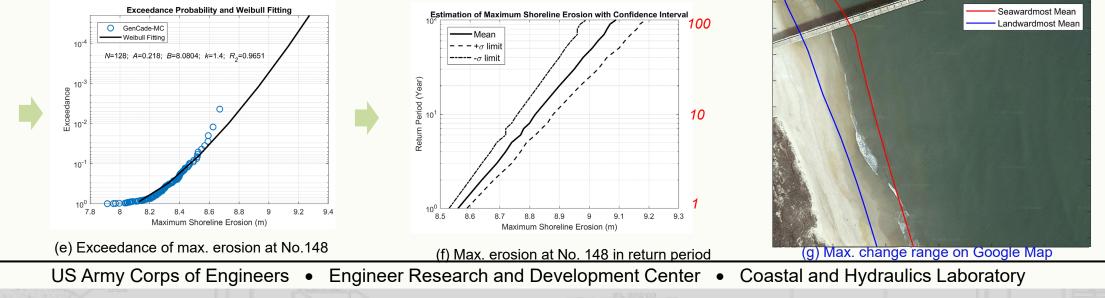

Creating Waves using PDF: Spectrum Approach


Monte-Carlo Simulation and Uncertainty of Shoreline Changes in Duck, NC


UNCLASSIFIED



(a) Study site at FRF, Duck, NC



(c) Probability of landwardmost change

(d) Standard deviation alonghshore

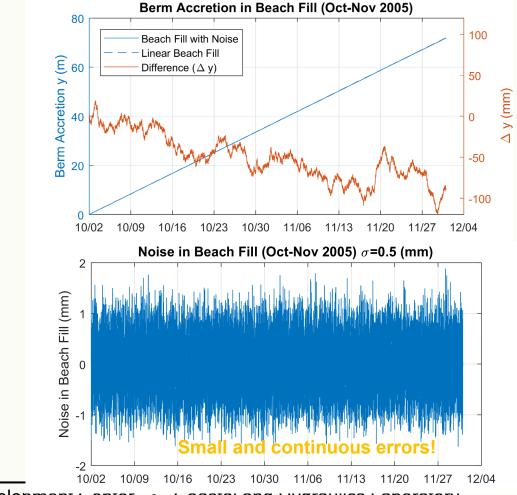
Case 2: Assessment of Uncertainty due to Beach Fill ($\Delta y(t)$)

Beach fill (Δy) = Planned Beach Fill ($\overline{\Delta y}(t)$) + White Noise

 $\Delta y(t) = \overline{\Delta y}(t) + N(0, \sigma^2)$ 370m Fenwick Island, DE RERM WIDTH VARIES (BASE CONTRACT + OPTION WIDTH VARIES (BASE CONTRACT) LANDWARD CREST OF DUNE (SEE NOTE 1 (Oct-Nov 200) First Fill 5H-19 (TYP)

BEACHFI

EXISTING GROUND


DISTANCE FROM SURVEY & (FEET

4 TYPICAL SECTION - BEACHFILL (FENWICK ISLAND

BEACHFILL (OPTION)

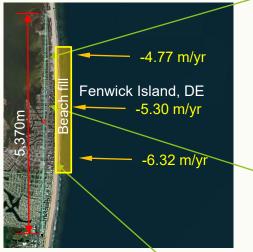
SEAWARD TOE OF

(SEE NOTE 2) SEAWARD TOE OF DUNE

ch and Development Center

Coastal and Hydraulics Laboratory

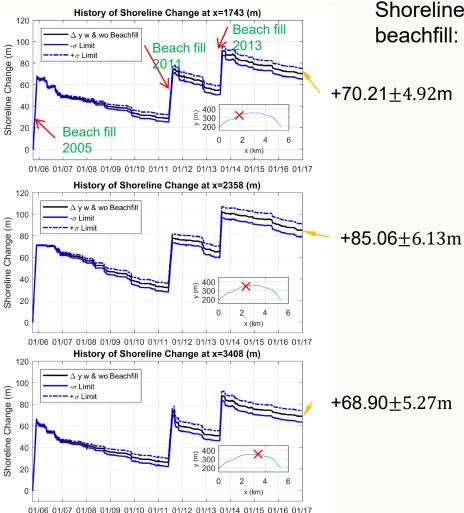
Shoreline Changes with Uncertainty in Beach Fill


(a) Shoreline change with errors • 12-year Shoreline Changes (2005-2017) • Periodical beach fills : 2005, 2011, & 2013 History of Shoreline Change at x=1743 (m) 100 N 🖛 • MC runs = 128 2013: 368 KCY $\sigma = 4.92m!$ Change (m) Ð Shorelir € 400 € 300 Fenwick Island, DE -50 σ Limit Observation 370m Seawardmost Mean 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15 01/16 01/17 History of Shoreline Change at x=2358 (m) 100 $\sigma = 6.13m!$ Shoreline Change (m) 87.34±4.<mark>45</mark>m Landwardmost Mean € 400 € 300 -50 Limit Profiles of Shoreline Positions on 01-Oct-2012 $+\sigma$ Limit 500 Observation R²=0.9136 E 450 -100 RMSE=9.27 m Beachfills 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15 01/16 01/17 400 (400 (No Beachfil History of Shoreline Change at x=3408 (m) Observation 100 eline 300 Change (m) $\sigma = 5.27m!$ Shore 200 Beach Fill Shoreline 150 400 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 E 300 Distance Alongshore (m) $+ \sigma \mid imit$ Model error: $\sigma = 12.49m$ Observation x (km) -100(216 data) 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/13 01/14 01/15 01/16 01/17

(b) Max. change range on Google Map

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Uncertainty-Based Assessment of Beachfill Effect


- 12-year Shoreline Changes (2005-2017)
- Periodical beach fills : 2005, 2011, & 2013

 Shoreline retreat rate without beachfill:

4.77~6.32 m/yr or

15.65~20.73 ft/yr

After 11 years Shoreline advanced by beachfill:

9

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Summary

FY20 Major Advances in Capability

- Update GenCade-MC using the release version of GenCade (validated in long-term simulations)
- Develop user interface based on SMS (ongoing)
- Develop capability to assess parameter uncertainty (e.g. beach fills)
- Test the code in HPC (GenCade-MC is timeconsuming if the number of samples becomes large)

FY20 Major Products & Collaborations

- JA (1), under revision
- TR (1), CHETN (1), CP (1)
- 1 Webinar (LRD)
- 1 CIRP TD
- Conference Presentation (ASBPA 2019)
- Collaboration with RSM-SBAS project, USACE-NAN (Long Island), Texas A&M (Mega beach nourishment in the Netherlands)

10

FY21 Products/Advances

- Complete dynamic user interface (SMS)
- Technical Transfer (webinar, TD, etc.)
- Publish results (TR, JA, CP)
- Develop non-stationary wave PDFs to represent seasonal variations of waves
- Study the uncertainty of sediment volume changes in long-term shoreline evolution
- Probabilistic Description of Multi-Variates (Joint Probability) in shoreline model
- Data collection and analysis