

CORPS SHOALING ANALYSIS TOOL (CSAT) ADVANCEMENTS

COASTAL NAVIGATION PORTFOLIO MANAGEMENT

Michael Hartman

Sean McGill, Charlene Sylvester, Lauren Dunkin, Ned Mitchell

District PDT Members

Tony Cekolin (SAM), Jeff Corbino (MVN), Shahidul Islam (SWG), Andrew Keith (SAM), Jeff Swallow (NAO)

UNCLASSIFIED

COASTAL INLETS RESEARCH PROGRAM

FY21 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation Business Line Manager

Eddie Wiggins

Technical Director, Navigation

Morgan Johnston

Acting Associate Technical Director, Navigation

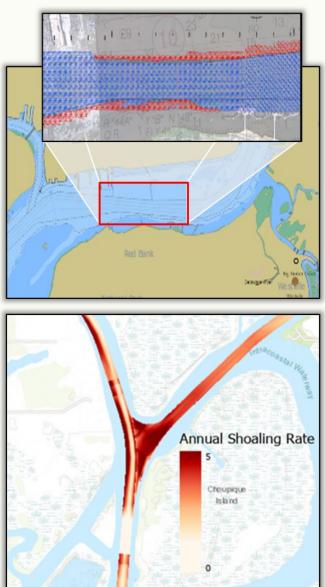
COASTAL & HYDRAULICS

LABORATORY

CESAS GA_01_SAV_4

vbee Knoll S

US Army Corps of Engineers_®

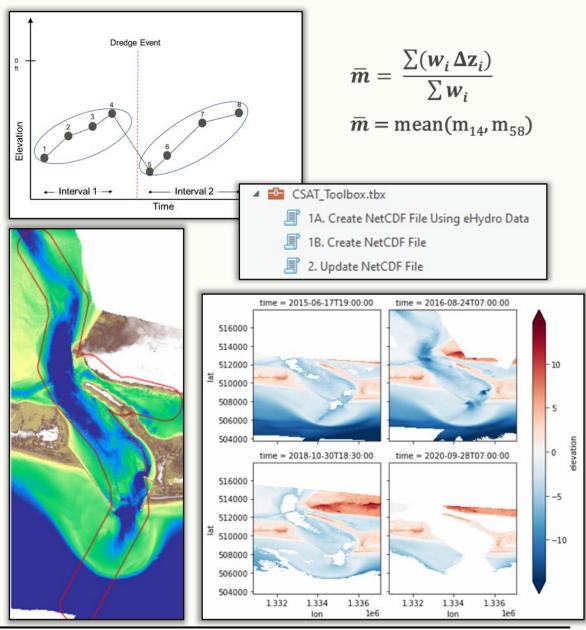

UNCLASSIFIED

Problem

- Quantitative analysis of navigation channel conditions is critically important to supporting the USACE Navigation Mission area.
- Accurate shoaling estimation is critical for designing various aspects of navigation projects:
 - Advanced maintenance depth selections
 - Dredged material management plan development
 - Erosion control and sediment training structure designs.

Statements of Need:

- 2021-N-1671 Corps Shoaling Analysis Tool (CSAT) Enhancement (#1 Ranked submission)
- 2015-N-15 Integration of national and local monitoring datasets to support navigation and operations projects
- 2015-N-34 Incorporating methods to evaluate length of navigation channel required for safe and efficient travel of two way traffic in ship simulations


US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Capability and Strategic Impact Statement

Shoaling rates can be used to identify hot spots or areas of increased sedimentation, *allowing engineers and scientists to evaluate environmental and human-induced changes on the Navigation portfolio*. Additionally, CSAT shoaling rates and channel navigability supports decision makers efforts to *maximize the use of Operations and Maintenance (O&M) funding* in the Navigation Business Line.

Approach and Methods

- Additional shoaling rate methods were introduced to reduce influence of depth changes related to high surveying frequency.
- Extending analysis beyond National Channel Framework (NCF):
 - Existing capabilities were closely linked to eHydro surveys and NCF, with some workarounds
 - User feedback expressed need to support user-provided AOIs, non-eHydro surveys
 - Solution:
 - ArcGIS Toolbox to prepare local surveys
 - Workflow to obtain NCMP lidar data through existing JALBTCX web services
- Cloud-based input creation and CSAT execution:
 - SAM Spatial Data Branch + Microsoft FastTrack
 - Azure Functions + Blob based triggers + HTTP Triggers
 - Unexpected challenge: ESRI Product Licensing in the cloud → Move towards Open Source alternatives

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED

UNCLASSIFIED

Summary

FY21 Major Advances in Capability

- New shoaling rate estimation methods
 - Weighted Average, Weighted Average (MedFilt), End Point Method

Extended CSAT capabilities beyond the NCF

- ArcGIS Toolbox for preparing local survey data from non-eHydro sources
- Workflow for integrating JALBTCX lidar data (Jupyter Notebook)

Improved QA/QC Tools

- GUI components built inside Jupyter Notebooks
- Input Survey Viewer
- Shoaling Rate Output Explorer

Planned Outyear Products/Advances

- Fully automated input generation from eHydro
- Continued development of JALBTCX integration
- Improved Datum Transformation Support

FY21 Major Products & Collaborations

- Updated CSAT inputs/outputs being hosted using Azure Blob Storage Containers
- 1 JA: ASCE Special Issue
- 1 TN: Shoaling rate estimation methods (draft)
- Direct District support: CESAS, CESWG
- CSAT Training Webinars: (60+22) attendees
- 3 Webinars: eHydro CoP, CEPOH, CESAJ
- CIRP TD: February 9, 2021
- RD20 Presentation: Channel Availability
- Collaborations: Microsoft FastTrack program, NavPortal
- Leveraging to other Programs:
 - DIG Dredging Data Fusion
 - DIG Dredge Project Selection Optimization
 - RSM Alternatives in SWP
 - RSM Calcasieu River Sediment Fingerprinting

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED