

Marissa J. Torres (CRREL)

Dr. Matt Malej

Dr. Michael-Angelo Y. Lam

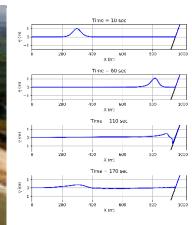
COASTAL INLETS RESEARCH PROGRAM

FY21 IN PROGRESS REVIEW

Tiffany Boroughs

HQ Navigation Business Line Manager

Eddie Wiggins

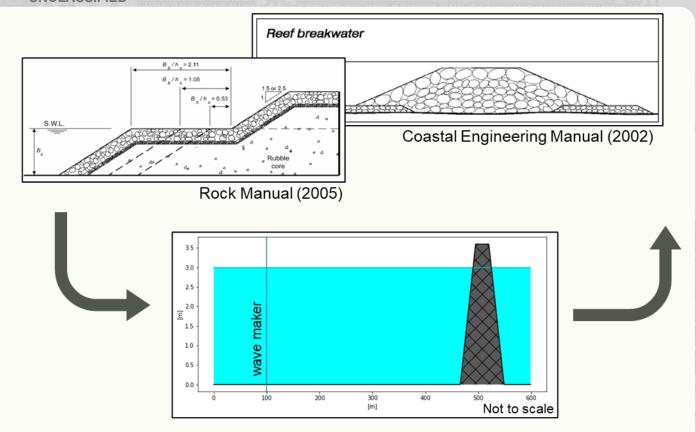

Technical Director, Navigation

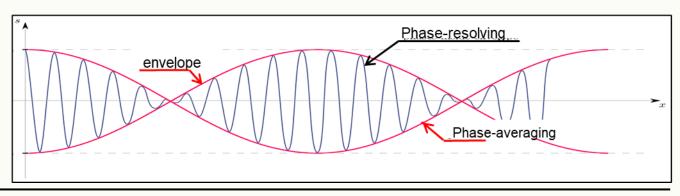
Morgan Johnson

Acting Associate Technical Director, Navigation

District PDT Members

Dr. Andrew Condon, SAJ
Dr. Patrick Kerr, SWG
Rachel Malburg, LRE
Hans Mortiz, NWP
Jessica Podoski, POH
Matthew Wesley, SPL





Problem Statement

- Coastal structures (e.g., breakwaters and jetties) are vital for navigation, shore protection, and beach stabilization
- There is rarely enough time, money, and resources to execute screening of structure design alternatives or robust assessment of wave-structure interactions
- Connect coastal engineering applications to the phase-resolving, nearshore numerical wave modeling environment & make numerical wave modeling more accessible to practitioners

Capability and Strategic Impact Statement

 Empowering, educating, and enhancing the skillsets of novice and intermediate users to implement complex, nonlinear numerical wave models

 Facilitate rapid screening of design alternatives for efficient and effective decisionmaking under environmental uncertainty

Save time, money, and resources on SMART planning initiatives

UNCLASSIFIED

Approach

Phase 1 – FY21 Phase 2 – FY22+

- <u>Technical approach</u>:
 - Outline numerical & physical considerations
 - Wave responses:
 - ► Wave reflection and absorption
 - ► Wave run-up
 - ▶ Wave overtopping and transmission
 - Overall guidance Value Added:
 - ► Amount of wave energy dissipation provided by the structure
 - ► Wave run-up exceedance probability
 - ► Wave overtopping rate in extreme scenarios

- Single impermeable trapezoidal breakwater
 - Slope m = 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
 - Crest width B = 3, 5, 10 m
 - Crest height $h_s = (1.1, 1.2, 1.3, 1.4, 1.5)$ *h

Structure Design Properties

Height (freeboard)	Surface	Porosity
Emergent	Smooth	Impermeable
Submerged	Rough	Permeable

Wave Climate Properties

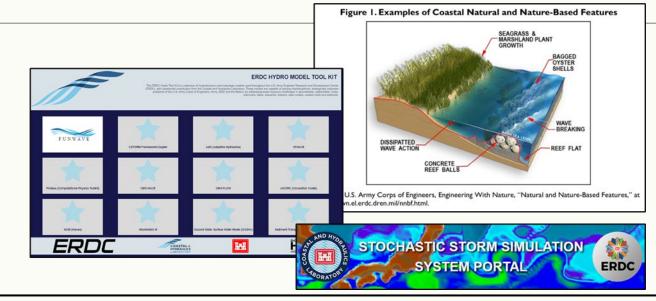
Wave Type	Dimension
Regular (Monochromatic)	1D 2D normal 2D oblique
Irregular (TMA)	1D 2D normal 2D oblique

Ensemble Variables

Structure variables	Wave variables	
Crest height	Wave period	
Crest width	Wave height	
Slope	Wave direction	
Roughness	Peak frequency	
"Sponge" layer width	First moment wave height	
"Sponge" layer strength	Water depth*	

Summary

FY21 Major Advances in Capability


- Fundamental knowledge transfer of physical and numerical considerations when using FUNWAVE
- Development of simulation test bed and structure design ensemble
- Aggregation of tools and resources in open-source forum – comprehensive Wiki

FY21 Major Products & Collaborations

- 1 ERDC TN & 1 ERDC TR
- 1 CIRP TD
- 1 CWG Presentation (date: TBD)
- 10 video tutorials on FUNWAVE HPC Portal
- 6 SoNs related to FUNWAVE in the Super RARG
- Connection to the practitioner

Planned Outyear Products/Advances

- Evaluation of wave-structure response in 1D & 2D applications
- Additional project and/or application specific video tutorials
- Contributions to the functionality of the FUNWAVE HPC Portal App

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory