

IMPACT OF MORPHOLOGY ON SEDIMENT DYNAMICS AT COASTAL INLETS INLET GEOMORPHOLOGY WU

Richard Styles, Douglas Krafft, Mitchell Brown

PDT Members

UNCLASSIFIED

Kelly Legault, SAJ Alex Sanchez, HEC

COASTAL INLETS RESEARCH PROGRAM

FY21 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation Business Line Manager

US Army Corps

of Engineers®

Eddie Wiggins Technical Director, Navigation

Morgan Johnston Acting Associate Technical Director, Navigation

Research & Development

UNCLASSIFIED

COASTAL & HYDRAULICS

LABORATORY

30

35

40

45

-4 -2 0 2 4

X Position (km)

0 -5 -10 -4 -2 0 2 4 X Position (km)

Problem Statement

- Existing theory suggests a primary factor controlling hydrodynamics and, by extension, sediment transport is basin morphology
- One factor not previously explored is sediment availability, which can alter bay morphology leading to potential feedbacks that could modify hydrodynamics of the system.
- Continuing evolution of land use practices (armoring, island construction, reclamation) and sea level change will alter coastal inlets/bays from present day configurations and associated sediment transport characteristics.
- Need to develop approaches to assess inlet/bay system likelihood of undergoing fundamental shifts in sediment transport patterns due to these influences (anthropogenic, sea level rise)

SONs

FY19 1356 (Long-term Modeling of Barrier Island Tidal Inlets) FY19 1370 (Testing and Evaluation of USACE Coastal Numerical Models) 17-N-71 (Modeling Effects of Sea Level Change at Tidal Inlets)

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED

UNCLASSIFIED

Capability and Strategic Impact Statement

Develop methodology to determine the likelihood of an inlet system to shift from import/export due to modification in land use and engineering practices (channel modification, wetland restoration, inundation due to sea level rise)

Use this information to inform planners & stakeholders of possible impacts to navigation.

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Impact of Horizontal Sediment **Distribution**

- Series of idealized CMS simulations \checkmark representative of Humboldt, CA, modeled 200 years of effective morphology change corresponding to a range of hypsometries
- Sediment import vs export
- \checkmark Add to stable configurations near the end of 200-year simulations and run for 50 years.
- ✓ Vary placement position

MODEL RESULTS

- Placements closer to inlet erode faster
- Placements farther from inlet contribute to export, but do not erode

UNCLASSIFIED

SEDIMENT EXPORT RATE

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED

5

UNCLASSIFIED

Summary

FY21 Products/Advances

- Hypsometry gives VERTICAL distribution but what about HORIZONTAL distribution?
- Quantify the effect of land distribution to inlet import/export
- Prepare JP
- Publish TR

FY21 Major Final Products & Collaborations

- Effect of Basin Hypsometry on Long-term Inlet Hydrodynamics and Sediment Transport TR (In review)
- CIRP TD (March 2021)
- Leverage new start on wetland nourishment
- Abstract submitted for the Estuarine Coastal Modeling session at the Coastal Estuarine Research Federation Conference

What about real systems? Can we populate a database using real inlets? Use information to inform inlet/channel

shoaling patterns

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED