

EVALUATING METHODS FOR ESTIMATING NEARSHORE BERM DEFLATION RATES INLET GEOMORPHOLOGY WORK UNIT

Rachel Bain, Brian McFall, Doug Krafft (ERDC), Austin Hudson (NWP)

COASTAL INLETS RESEARCH PROGRAM

FY21 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation **Business** Line Manager

Eddie Wiggins

Technical Director, Navigation

Morgan Johnston

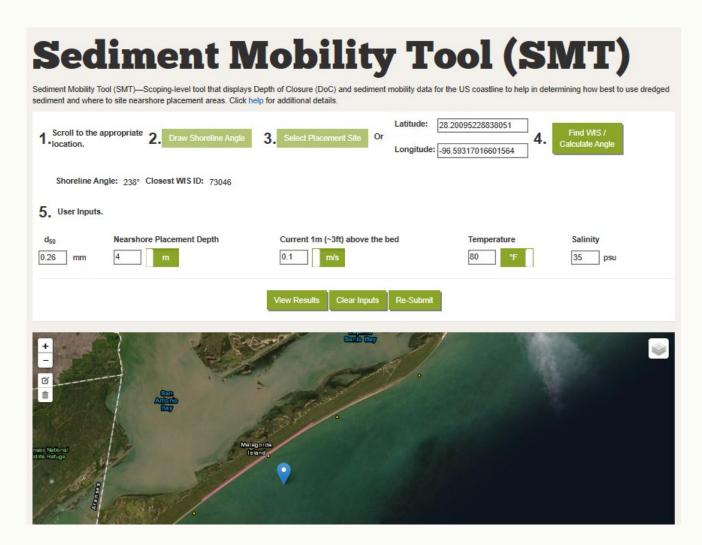
Acting Associate Technical Director, **Navigation**

Can bulk longshore and/or cross-shore transport equations be used to predict deflation rates of sediment placed in the nearshore?

- Existing predictive methods tend to emphasize the likelihood of sediment motion, but they do not calculate the rate of sediment removal from a placement site
 - e.g., McLellan et al. (1990), Hands and Allison (1991), Ahrens and Hands (1998); McFall et al. (2016);
 Priestas et al. (2019)
- Recent progress towards cross-shore deflation rate prediction by Hudson et al. (2021).
- Objective is to develop a computationally-efficient method of generating order-ofmagnitude nearshore berm deflation rates using combined longshore and cross-shore transport equations.

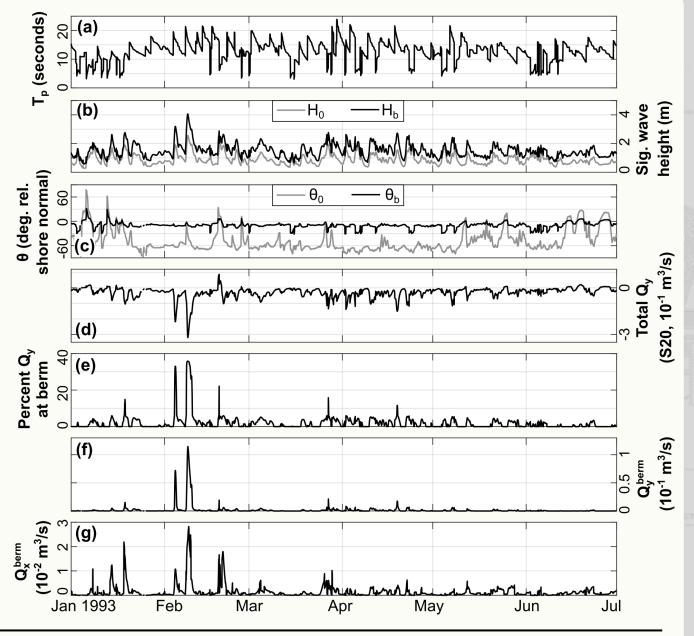
Statements of Need:

2020-N-1564: Increasing Beach Nourishment Lifespan with Nearshore Nourishments 2020-N-1481: Improving scoping level estimates of the lifespans and deflation rates of nearshore nourishments


2019-N-1386 Strategic Nearshore Placement of Dredged Material to Sustain Coastal Beach & Dune Resilience

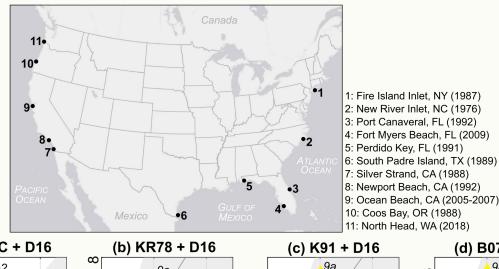
2017-N-70 Analysis of Shoreline Response to Nearshore Placement Geometry 2016-N-04 Quantifying wave and current driven sediment transport at nearshore dredge disposal sites

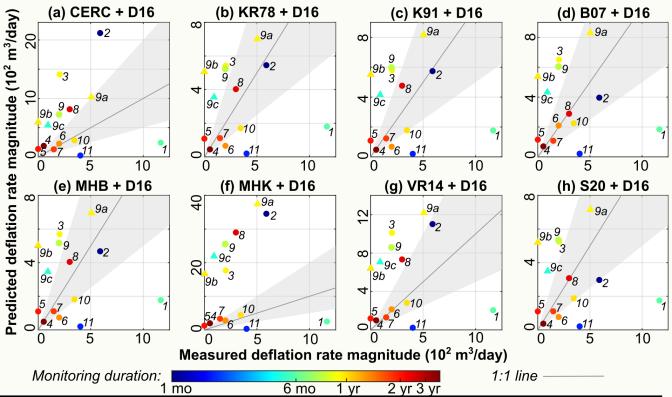
Capability and Strategic Impact Statement


An algorithm for estimating nearshore berm deflation rates using published longshore and cross-shore transport equations will provide valuable information for placement design and renourishment planning.

The algorithm will be implemented within the Sediment Mobility Tool to facilitate usage.

Algorithm overview


- Longshore and cross-shore transport rates are independently calculated and then superimposed to generate a total deflation rate.
- Parameters include nearshore berm position, geometry, and grain size, along with wave height, direction, and period from the most proximal WIS station.
- Percentage of longshore transport contributing to deflation is based on experimental data.



US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Validation

- Eight longshore transport formulations were evaluated for relative performance.
- Cross-shore transport was calculated using the method of Dronkers (2016) as implemented by Hudson et al. (2021).
- Error between measured and calculated deflation rates was determined for 11 historical nearshore berm sites.
- Best-performing method applies the longshore transport formula of Shaeri et al. (2020) and the cross-shore transport formula of Dronkers (2016; abbreviated S20+D16 at right).
 - Maximum |percent error| of 167%
 - Average |percent error| of 72%.
 - Low sensitivity to grain size uncertainty.
 - Low sensitivity to beach slope uncertainty.

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Summary

FY21 Major Advances in Capability

- **Cross-shore transport added to** longshore-based method developed in FY20.
- Significant increase in scope of validation.
- Methods documented in detail and available to the public.

FY21 Major Products & Collaborations

- 1 journal article published in *Journal* of Waterway, Port, Coastal, and Ocean Engineering.
- 1 CIRP TD in May 2021.

FY22 Products/Advances

Methodology will be implemented within Sediment Mobility Tool (SMT).