

CMS & C2SHORE MODEL DEVELOPMENT AND VALIDATION

Bradley Johnson (CPB) Elizabeth Holzenthal (CEB) **District PDT Members** Colin Reis (SAJ), Nikole Ward (SAJ)

UNCLASSIFIED

COASTAL INLETS RESEARCH PROGRAM FY22 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation Business Line Manager

Eddie Wiggins Technical Director, Navigation

Brian McFall

Acting Associate Technical Director, Navigation

COASTAL & HYDRAULICS LABORATORY

US Army Corps of Engineers®

Problem Statement – Surf & Swash Complexities

- Accuracy of the widely used Coastal Modeling System (CMS) with C2SHORE model is essential for accurate planning and design
 - Navigation sediment transport from open coasts to coastal inlets and channels
 - BUDM fate and evolution of nearshore nourishments
 - FRM design of flood protection dunes
- Limited testing of swash-zone formulations of hydrodynamic and sediment transport hinders applicability

Navigation Statements of Need

- 2024-N-1906: Quantification of Shoreline Response to Nearshore Berms
- 2024-N-1906: Multi-scale analyses of BUDM impacts on long-term navigation channel maintenance
- 2021-N-1538: Nearshore Processes Research and Development

FY22 Tasks

- Adding vertical velocity variation to improve sediment transport (largely completed in FY21)
- Validate swash-zone processes on wave-dominated coast (FRF, Duck, NC)
 - 2D case, comparison of surf zone velocity field collected via aerial optical imagery (*TD on Tues 4/25*)
 - 1D case, comparison of wave runup statistics collected via continuous laser scanning (LiDAR)
 - CMS/CSHORE and comparison models with range of complexity (algebraic to nonhydrostatic)
 - ► 533 "snapshots" of runup stats over 1.5 months

Comparison models

Stockdon, et al. (2006) – least complex, mostly widely used Runup model

- Algebraic equation developed from observations at Duck FRF, West Coast, and abroad
- Separate terms for different key physical processes, all dependent on Iribarren number (*Ib*)

UNCLASSIFIED

- XBeach more complex, two modes with distinctly different physics
 - Surfbeat phase averaged; swash routine forced with IG energy band and wave group envelope
 - Nonhydrostatic (most complex) phase (wave-by-wave) resolving, similar to Boussinesq models, nonlinear frequency interactions, breaking, fully dispersive

C2SHORE & CMS Advancement: Domain partition

- Slope break of water line indicates differing physics
- Separate model domain, solve separately
 - Non-IG wave models assume *locally-identical* saturated wave height condition near the shoreline
 - Demarcation at a *constant depth* results in predictions of runup that are not proportional to incident wave heights (unmatched variation)
- Data (and intuition) indicate as H_{mo} ↑, $R_{2\%}$ ↑ from both dynamic (oscillatory swash) and static (wave setup) components
 - NEW demarcation set to depth of max wave setup
 - Requires NEW simplified wave ray-tracing in CMS (trivial for steady 1D models)
 - Results in IG and setup components that are set proportional to H offshore

C2SHORE & CMS Advancement: NEW Formulation and Justification

Consider: Frictionless planar beach and monochromatic waves

Classic view of swash has a position at shoreline where bores collapse, generating fluid velocity V_0 and resulting in runup R

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

C2SHORE & CMS: NEW Formulation and Justification

CMS Runup R_{CMS} requires single-

Up-rush friction-less momentum balance $\frac{\partial M}{\partial x} = \frac{\partial}{\partial x} \left\{ \mathbf{A_0} g h^2 \right\} = -g h \frac{\partial z_b}{\partial x} \qquad \text{Momentum balanced} \\ \text{by bottom pressure} \end{cases}$ For planar friction-less slope (rewrite, integrate over x) $\left[\frac{\partial h}{\partial x} = \frac{\frac{\partial z_b}{\partial x}}{2A_0}\right] dx$

Integrate at h = 0 (i.e., end of uprush film)

limit of uprush (h = 0)

UNCLASSIFIED

$$R_{CMS} = 2A_0h_0$$

 $R_{CMS} = \frac{V_0^2}{2a}$

Alternatively, Shen and Meyer, or Bernoulli, or ballistics

Intuitively, Newtonian ballistics, or velocity "head"

where Baldock and others cast V_0 in terms of initial wave height or depth

$$V_0 = 2\sqrt{gH_0} = \sqrt{8}\sqrt{gh_0}$$

Shallow water flow

Closure *A*₀ varies for monochromatic H vs $H_{2\%}$

parameter closure A_o

Comparing estimates of runup indicates $A_0 \simeq 2$ for monochromatic waves. Using $H_{2\%}$ results in

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Intermodel comparison

	Runtime	RMSE (m)	NRMSE (-)
Stockdon, et al. (2006)	0.18 s	1.01	0.89
CSHORE	25.0 s	0.55	0.34
CMS – new formulation	4.1 min	0.29	0.13
XBeach-Surfbeat	35.5 hr	0.53	0.30
XBeach-Nonhydrostatic	124.4 hr	0.45	0.23

- After model improvements, CMS had the lowest (N)RMSE
- FRF observations indicated closure parameter
 *A*₀ does have some dependence on *Ib*
 - Revise formulation, $A_0 = 2.6 + 4.5$ *lb*

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Intermodel comparison

	Runtime	RMSE (m)	NRMSE (-)
Stockdon, et al. (2006)	0.18 s	1.01	0.89
CSHORE	25.0 s	0.55	0.34
CMS – new formulation	4.1 min	0.29	0.13
XBeach-Surfbeat	35.5 hr	0.53	0.30
XBeacg-Nonhydrostatic	124.4 hr	0.45	0.23

- After model improvements, CMS had the lowest (N)RMSE
- FRF observations indicated closure parameter
 *A*₀ does have some dependence on *Ib*
 - Revise formulation, $A_0 = 2.6 + 4.5$ *lb*

Intermodel comparison

- De-tided R_{2%} time series shown to vary with tidal stage, although Stockdon prediction does not
 - Since Stockdon formulation depends only on beach foreshore slope, increased water level cannot be simply explained by concave-up beach profile
 - Instead, sandbar acts to modulate the windwave component as water level increases (breaking wave height increases)
- Thus, not only is new CMS formulation fast and more accurate, but includes important bar morphology (unlike Stockdon et al., 2006)

 $\bar{\eta}(x)$

Summary

- FY22 Major Advances in Capability
 - Surf- and swash-zone *domain partition* derived from:
 - Separated impact of waves, not a fixed water depth
 - Resolved with backwards ray-tracing
 - Wave *runup formulation* improvement
 - Swash closure parameter dependent on wave height, Iribarren number
 - More accurate and faster than models with more physical processes resolved
 - Includes sandbar hydrodynamics (key!)

FY22 Major Products & Collaborations

- Technical Report (in progress)
- CIRP Tech Discussion (Jan 2023)
- TD Next Tuesday! 2D Surf Modeling next Tuesday (4/25)
- CW Weekly (Feb 2023)