

TOOLS FOR SIMULATING AEOLIAN TRANSPORT NEAR INLETS

Pls: Nick Cohn, Janelle Skaden

Additional Team Members: Brad Johnson, Scott Spurgeon

District PDT Members

UNCLASSIFIED

Rod Moritz (NWP), Gabriel Todaro/Kelly Legault (SAJ)

COASTAL INLETS RESEARCH PROGRAM FY22 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation Business Line Manager

Eddie Wiggins Technical Director, Navigation

Brian McFall

Acting Associate Technical Director, Navigation

Sediment/ Infrastructure Interaction

Jetty

Coastal Inlet Infilling

Coastal Foredune Development

gshore Transport

 \approx

Examples of Aeolian Transport Pathways in Managed Coastal Environments

US Army Corps of Engineers_®

Problem Statement

- Wind can transport sand and modify landscapes in managed coastal systems, resulting in sediment deposition that may adversely (inlet infilling) or positively (dune growth) impact project performance
- Suitable tools do not currently exist for USACE to simulate wind-blown sediment transport and related hazards

Relevant Statements of Need:

2014-N-10 Update of Engineering Guidance for the Development and Maintenance of Coastal Dune Systems

2017-N-72 Improved Simulation of Dune Morphological Response at Short & Long Time-scales

2020-F-1539 Improved Capabilities for Quantifying Coastal Dune Evolution and Resilience

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Capability and Strategic Impact Statement

This work unit aims to develop and extend state-of-the-art tools for simulating wind-driven sediment transport processes in proximity to navigational channels and in other USACE-managed coastal settings.

3

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Work Unit Tool Development

Dune Response Tool

Why Develop DRT

to minutes)

Model

efforts

٠

•

٠

٠

Reduced Physics

Very fast (seconds

Suitable for planning

Webtool Capable

承 Dune Response 1	ГооІ		-		
ERDC	Model Attributes	Advanced			
CIRP		Location			
Assessed & Development	Latitude	e 36.18	С	hoose	
Dune Response	Longitude	e -75.75		ocation n Map	
Tool		Morpholog	gy		
	Dune Crest Elev. (m) 6			
	Dune Toe Elev. (m) 3		pdate	
Info	Dune Slope (m/m) 0.2	Ba	sed on	
	Beach Slope (m/m	0.1		at/Lon ocation	
	Shore Normal (deg.	.) 70.0			
Run		Timin	g		
Model	Hindcast (198	0 - 2017)	OFore	cast (now	v)
	Start Date	e	25-00	xt-2012	•
Save	Duration (days)		7	

Graphical User Interface

Example Model Outputs

-25

-30

-20

-15 Cross-Shore Distance (m)

10/25 10/26

5

Dune Response Tool

Why Develop DRT

- Reduced Physics
 Model
- Very fast (seconds to minutes)
- Suitable for planning efforts
- Webtool Capable

Validation of Erosion Module at Interannual Time Scale: Point Hope, AK, USA

JGR Earth Surface RESEARCH ARTICLE 10.1029/2022JF006813 Assessing Drivers of Coastal Tundra Retreat at Point Hope, Alaska Special Section: Prediction in coastal momorpheleow Nicholas Cohn¹² [©], Lauren V. Bosche³, Taber Midgley⁴ [©], Christopher Small⁴, Thomas A. Douglas³ [©], and Jeffrey King⁵

6

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Dune Response Tool

Why Develop DRT

to minutes)

Model

efforts

•

•

Reduced Physics

Very fast (seconds

Suitable for planning

Webtool Capable

(ш) ⁵ (ສ 15 L 1 (m) 1 SWL (m) المرمعة إعدارهم ومعقلها والعمرونا وأفري والتروير الأحمال المرتابية ومطاقفتها والمتعرب وأنته u_{wind} (m/s) 10 (m³/m) V dune -20 ⊲

Probabilistic Modeling of Dune Growth/Erosion

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Dune Response Tool

Why Develop DRT

- Reduced Physics
 Model
- Very fast (seconds to minutes)
- Suitable for planning efforts
- Webtool Capable

- FY22 PMP Tasks:
- Github Open Source Code

ERDC Tech Note

https://github.com/erdc/d une-response-tool

Journal Paper

Published

٠

٠

Journal of Geophysical Research: Earth Surface using DRT Erosion engine

Future Steps:

- JP with both erosional and accretional capabilities
- Collaboration with Oregon State University for dune applications
- Adaptation of erosion engine for Arctic environments (EWN, Congressional Add, ESTCP funds)

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Why Develop Aeolis

- 1D and 2D Applications
- Modular code for adding in new USACE-relevant capabilities
- Suitable for planning and design efforts
- Growing user base for aeolian and NNBF applications

FY22 Tasks

9

- Code Development
- Training Courses
- Applications

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Why Develop Aeolis

- 1D and 2D
 Applications
- Modular code for adding in new USACE-relevant capabilities
- Suitable for planning and design efforts
- Growing user base for aeolian and NNBF applications

Code Development:

- Improved moisture and groundwater capabilities
- Seperation bubble dynamics
- Dune erosion module
- Improved aerodynamic roughness parameterization

10

- Vegetation shear couplers
- Bug fixes
- Improved documentation

Sprint Sessions: Sweden, Netherlands, USA, Belgium

Code Development

11

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Code Development

https://github.com/openearth/aeolis-python https://github.com/erdc/aeolis-python

12

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Training Courses

Self guided pythonbased course for running Aeolis

https://github.com /erdc/aeolispython/tutorials

13

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Upyter AeoLiS - 1. Introduction and sediment sorting (autosaved)

Training Courses

In person course development

FY23 Deliverable

E11. E 114		
File Edit	View Insert Cell Kernel Widgets Help Not Trus	sted Python 3 (ipykerne
8 + % 4		
	1. Introduction and sediment sorting	
	situations where supply-limiting factors are important, like in coastal environments. Supply-limitations currently supported are soil	moisture contents, sedimen
	sorting and armouring and roughness elements.	
	Along with this notehook a series of Apol IS model schematizations of the Sand Motor is provided. These model schematizations	can be used to answer a
	series of questions at the end of this notebook. Note that these model schematizations are highly optimized for speed and only ha	ave an educational purpose.
	Even to calle by calcoting the call and proce Chiff Enter	
	Execute cells by selecting the cell and press Shint-Enter.	
	Additional information	
	 The full user documentation of AeoLiS can be found at: <u>http://aeolis.readthedocs.io/</u>. 	
	 The latest AeoLiS source code can be found at: https://github.com/openearth/aeolis-python. 	
	 The full scientific description of AeoLiS can be found in: 	
	Hoonhout, B. M. and S. de Vries (2016). A process-based model for aeolian sediment transport and spatiotemporal varying se	ediment availability. J.
	Hoonhout, B. M. and S. de Vries (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, http://dx.doi.org/10.1002/2015JF003692.	ediment availability, J.
	Hoonhout, B. M. and S. de Vires (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> .	ediment availability, J.
	Hoonhout, b. M. and S. de Vires (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, http://dx.doi.org/10.1002/2015JF003692. Helper functions	ediment availability, J.
	Hoonhout, b. M. and S. de Vines (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot. tools.py that is shipped will	ediment availability, J.
	Hoonhout, b. M. and S. de Vires (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003692</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped will to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate.	ediment availability, J.
	Hoonhout, b. M. and S. de Vries (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003692</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file <pre>plot_tools.py</pre> that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available:	ediment availability, J.
	Hoonhout, b. M. and S. de Vries (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003692</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file <pre>plot_tools.py</pre> that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available:	ediment availability, J.
	Hoonhout, b. M. and S. de Vines (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry	ediment availability, J.
	Hoonhout, b. M. and S. de Viries (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped will to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry • plot_erosion • plot_erosion	ediment availability, J.
	Hoonhout, b. M. and S. de Vries (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003692</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped will to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry • plot_erosion • plot_erosion • plot_erosion	ediment availability, J.
	Hoonhout, b. M. and S. de Vines (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped will to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_lotshtymetry • plot_erosion • plot_erosion • plot_coverage • create_animation	ediment availability, J.
	Hoonhout, b. M. and S. de Vines (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry • plot_erosion • plot_erosion • plot_coverage • create_animation	ediment availability, J.
In [1]:	Heophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015.F003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: plot_acrosion plot_erosion plot_coverage create_animation # this line causes plots to appear inline rather than in a separate window	ediment availability, J.
In [1]:	Hoonhout, b. M. and S. de Vines (2016), A process-based model for aeolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped will to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry • plot_erosion • plot_erosion • plot_coverage • create_animation # this line causes plots to appear inline rather than in a separate window imatplotlib inline	ediment availability, J.
In [1];	Hoonhout, b. M. and S. de Vines (2016), A process-based model for acolian sediment transport and spatiotemporal varying se Geophys. Res. Earth Surf., 121, 1555–1575, <u>http://dx.doi.org/10.1002/2015JF003682</u> . Helper functions A few helper functions that you can use to analyze the model output can be found in the file plot_tools.py that is shipped wit to execute the next cell with Shift-Enter to enable these helper functions. Adapt the functions if appropriate. The following functions are available: • plot_bathymetry • plot_erosion • plot_erosion • plot_crosion multi • plot_coverage • create_animation # this line causes plots to appear inline rather than in a separate window tmatplotlib inline from plot tools aandmater import *	ediment availability, J.

Logout

14

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

20

20

UNCLASSIFIED

Model Applications

RESEARCH ARTICLE

Observations and modeling of shear stress reduction and sediment flux within sparse dune grass canopies on managed coastal dunes

ESPL WILEY

15

Meagan Wengrove¹ | Nicholas Cohn³^o | Peter Ruggiero⁴ | John Dickey^{1,2} Sally D. Hacker⁵

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Does spatio-temporal variability in grain size on the beach influence longterm wind-blown transport rates?

16

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

- Average D50 across all samples results in ~20% less transport than more frequent data availability. Need to pick grain size data carefully
- 2D simulations suggest that persistence of coarse deposits on the beach can have alongshore dune growth rates

Does spatio-temporal variability in grain size on the beach influence longterm wind-blown transport rates?

Product: CIRP TD, Future JP?

17

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Automated codes to estimate wind-blown sediment fluxes around the country using SandSnap grain size and public data sources for winds, waves, tides, and morphology

Product: CIRP TD

18

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Field Data Collection Nor'Easter Event (8 Nov 2021)

Data Processing Raw Hologram O mm (Bottom of Sample Volume)

New field measurements are guiding need for model improvement for future R&D cycles

Product: RD22 Presentation

19

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Why Develop Aeolis

- 1D and 2D
 Applications
- Modular code for adding in new USACE-relevant capabilities
- Suitable for planning and design efforts
- Growing user base for aeolian and NNBF applications

FY22 PMP Tasks:

٠

.

- Model Development, Sprints, and Maintenence
- Course Development
- Model Applications
- Journal Paper
 - ESPL using Aeolis

Future Steps:

- JP on Aeolis
- Ongoing collaboration with TU Delft, Lund University, Oregon State University, and others
- Model coupling efforts to integrate Aeolis to USACE models
 - GenVeg/Doonies → EWN, OSU Add
 - CSHORE --.> USCRP, OSU Add
 - CMS \rightarrow CIRP

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

2D CMS-Aeolis Coupling

Why Develop 2D **Coupling Capabilities**

- Both subaerial and subaqueous processes important for driving the evolution of coastal systems
- Quantifying aeolian transport effects on inlet fluxes requires 2D coupled solutions
- Leverages existing **USACE** models and GUI tools

Traditional CMS Workflow – Aeolian Transport Not Considered

Sediment Transport

Goal:

Add in capability to directly couple Aeolis with CMS for 2D applications

Approach:

- cms_flow.f90 (modification) modify main code to call aeolian steering file and handle topographic updates (Brad Johnson)
- aeolian.f90 (new) steering file to update topography from wind Includes system call to aeolian.py which generates all Aeolis input files, runs Aeolis, and returns data to CMS
- scenario.cmcards (modification) new options for coupling interval and subaerial grain size

US Army Corps of Engineers • Engineer Research and Development Center

Coastal and Hydraulics Laboratory Original CMS

2D CMS-Aeolis Coupling

Example 2D case for Benson Beach, WA -10 m/s onshore wind for

 $z_b[m]$

-10

-15 2000

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

UNCLASSIFIED

Deposition in Vegetated Dune

CMS + Aeolis

2D CMS-Aeolis Coupling

Example 2D case for USACE Field Research Facility

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Summary

FY22 Major Advances in Capability

- Aeolis
 - Major code updates for 1D and 2D applications
 - Bug tracking system
 - Self Guided Short Course Development
 - In Person Course Development
 - Journal Paper, Tech Note
- DRT + CMS/Aeolis

FY22 Major Products & Collaborations

- 2 TNs published
- 2 JPs published
- 1 Conference Presentation
- 1 CIRP TD and 1 PDT Meeting
- Collaboration with Oregon State University, Lund University, TUDelft, KU Leuven, and Deltares on Aeolis Development

Planned Outyear Products/Advances

- Aeolis
 - In-person model training (Coastal Sediments)
 - Conference presentations and papers
- 2D CMS-Aeolis Coupling
 - Major development push and application of tool to real world conditions
 - Atlantic, Pacific, and Gulf Coasts

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory