

Channel Shoaling and Analysis Toolbox (CSAT) Advancements

Michael Hartman

Charlene Sylvester, Rachel Bain Lauren Dunkin, Ned Mitchell

District PDT Members

Tony Cokolin (SAM), Jeff Corbino (MVN), Shahidul Islam (SWG), Andrew Keith (SAM), Jeff Swallow (NAO)

UNCLASSIFIED

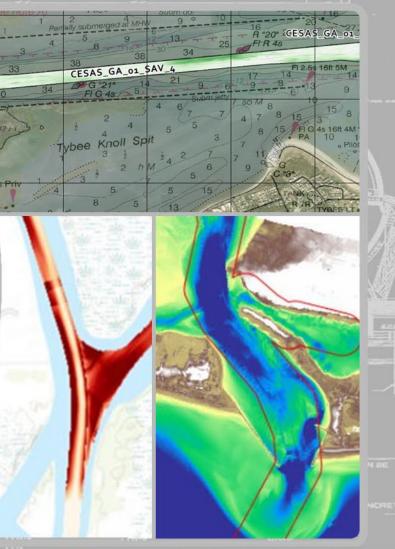
COASTAL INLETS RESEARCH PROGRAM FY22 IN PROGRESS REVIEW

Tiffany Burroughs

HQ Navigation Business Line Manager

Eddie Wiggins Technical Director, Navigation

Brian McFall

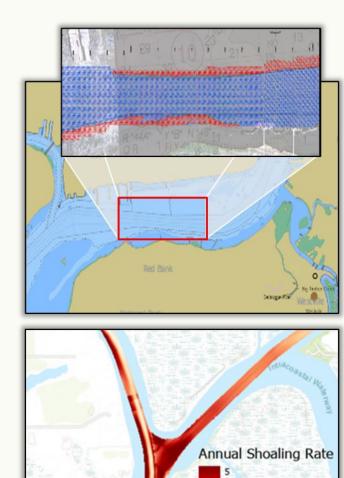

Research & Development

UNCLASSIFIED

COASTAL & HYDRAULICS

LABORATORY

Acting Associate Technical Director, Navigation


US Army Corps of Engineers®

Problem

- Quantitative analysis of navigation channel conditions is critically important to supporting the USACE Navigation Mission area.
- Accurate shoaling estimation is critical for designing various aspects of navigation projects:
 - Advanced maintenance depth selections
 - Dredged material management plan development
 - Erosion control and sediment training structure designs.
- Current shoaling estimates limited to Federally authorized navigation channel dimensions

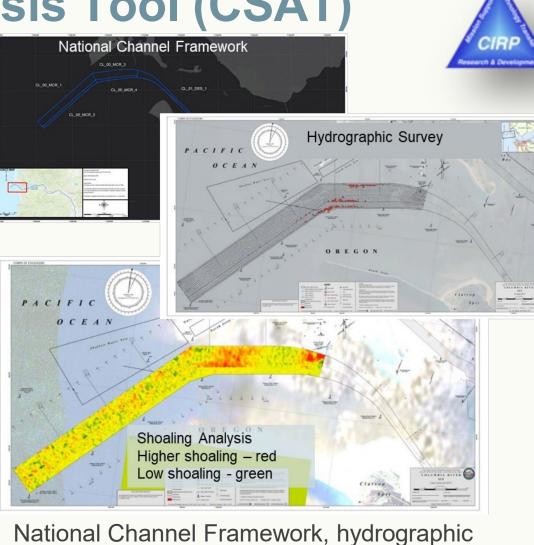
Statements of Need:

- 2021-N-1671-Corps Shoaling Analysis Tool (CSAT) Enhancement (#1 Ranked submission)
- 2015-N-15-Integration of national and local monitoring datasets to support navigation and operations projects
- 2015-N-34-Incorporating methods to evaluate length of navigation channel required for safe and efficient travel of two-way traffic in ship simulations

Choupiqu

Is la nd

Corps Shoaling Analysis Tool (CSAT)


Description

- CSAT estimates shoaling rates using hydrographic surveys within the boundary of the National Channel Framework.
- CSAT uses the historical shoaling rates to predict future dredging volumes at various channel depth intervals.
- Where are shoaling 'hot spots' within the navigation channel?

US Army Corps of Engineers

How has shoaling changed as a result of meteorological events (extratropical storm, rainfall or drought periods), dredge schedule change or dredge type change?

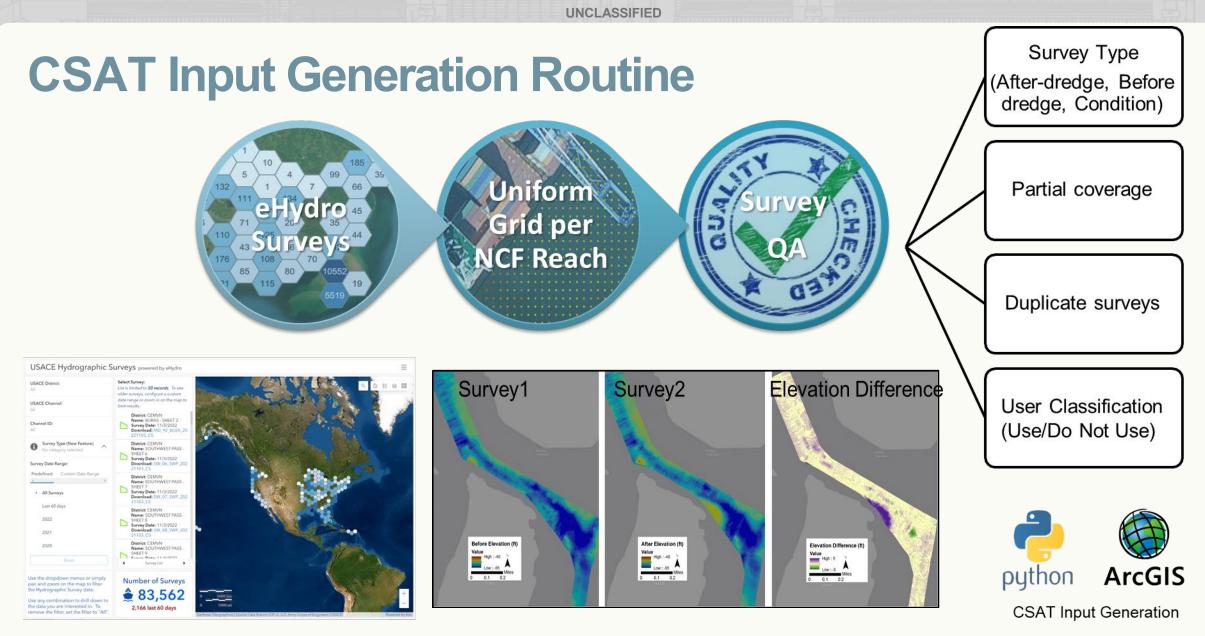
https://cirp.usace.army.mil/products/csat.php

survey map sheet from eHydro, and the

shoaling rate prediction for Columbia River, OR.

Capability and Strategic Impact Statement

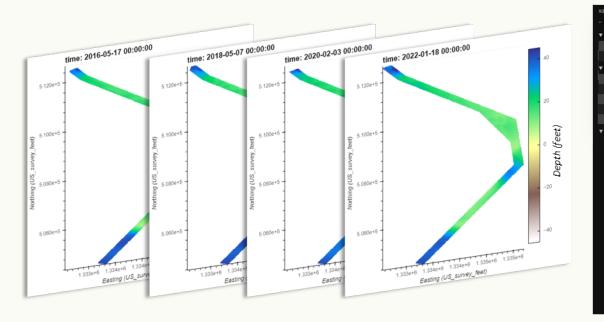
Shoaling rates can be used to identify hot spots or areas of increased sedimentation, *allowing engineers and scientists to evaluate environmental and human-induced changes on the Navigation portfolio*. Additionally, CSAT shoaling rates and channel navigability supports decision makers efforts to *maximize the use of Operations and Maintenance (O&M) funding* in the Navigation Business Line.


FY22 Expansion of CSAT Capabilities beyond the NCF

- CSAT currently estimates shoaling rates using hydrographic surveys within the boundary of the National Channel Framework.
- Sediment migration patterns within the vicinity of the NCF are important to understand.
- Availability of high-resolution regional topobathy lidar datasets provides opportunity to expand CSAT capabilities.

National Coastal Mapping Program

- Develops regional, repetitive, highresolution, high-accuracy elevation and imagery data
- To build an understanding of how the coastal zone is changing
- Facilitates management of sediment and projects at a regional, or watershed scale



eHydro Viewer - https://www.arcgis.com/apps/dashboards/4b8f2ba307684cf597617bf1b6d2f85d

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

CSAT Inputs and Formats

Sheet Name

Pensacola Civil

Entrance Channel

Reach_Name Depth Depth_Proj

Reach 1

35.0

Reach_ID

CF_01_PEC_1

CF_01_PE

CF_01_PEC

array. Dataset												
Dimensions:	(time: 28, poi	nts: 219685									Iro Su	rvey Data
Coordinates:									E	тус	JIO SU	vey Dala
time	(time)								NL	etCL		
points	(points)	float64 0.						• 2	146		7	
Data variables:												
latitudes	(points)											
longitudes	(points)	float64										
depths	(time, points)				https	s://ci	rp.usa	ace.a	rmv.	mil/r	oroducts/c	sat_districts.php
surveyld	(time)	S50				.,,			· · · ·			
crsSTPL	0	int32										
Attributes:									-			
description :	USACE eHydro	o Data data	in the					CSAT I	nput/Oι	utput Fil	es (by Division)	
title :	D:\ArcGISPro_											
	SAT_EXE_SAM		:ESAN	LRD	MVD	NAD	NWD	POD	SAD	SPD	SWD	
history : Source_Software :	File created 20 File created wi		ad as	CEMV	M - Mom	phis Dist	trict		Input		Output	Latest survey
institution :	USACE	iui Aarray ai	ng ne	CLINI	- Hem		lince		mpac		output	Latest survey
program :	USACE eHydro	0		CEMV	N - New	Orleans	District		Input	Out	put - SW Pass	data inpute
Conventions :	CF-1.6										put - All others	data inputs
cellsize :	10-feet									<u>- 0 u c</u>		
geospatial_lat_u	US_survey_foo	ət		CEMV	R - Rock	Island D	District		Input		Output	
geospatial_lat_re												
geospatial_lon_u		ot		CEMVS	5 - St. Lo	ouis Dist	rict		<u>Input</u>		<u>Output</u>	
geospatial_lon_r												
geospatial_vertic geospatial_boun				CEMV	P - St. Pa	aul Distri	ct		<u>Input</u>		<u>Output</u>	
ncf channel ID :	CF 14 DEC 1											
ncf_channel_Na	Destin			CEMV	< - Vicks	burg Dis	trict		<u>Input</u>		Output	
nTimes :	28							_				

CCR_line_2 raster_ce

Reach 1

CCR line 1

Channel

Pensacola Civil Entrance

Channel	Reach	Table
CSV		

Survey Information Table CSV

7

C_2	Pensacola Civil Entrance Channel	Reach	_2 35.0	35.0	CF_01_PEC	Florida North	PENSACOLA	Pensa	cola Civil Entranc Channe		Reach_	_2 10
C_3	Pensacola Civil Entrance Channel	Reach	_3 35.0	35.0	CF_01_PEC	Florida North	PENSACOLA	Pensa	cola Civil Entranc Channe		Reach_	_3 10
		Survey	DateStamp			SurveyID	Reach_N	lame	Reach_ID	Cell_Size	Use	% Coverage
		0	20120430	CF	_14_DEC_20	120430_CS	Destin Ent	rance	CF_14_DEC_1	10.0	1.0	2.01
		1	20120628	CF	_14_DEC_20	120628_CS	Destin Ent	rance	CF_14_DEC_1	10.0	1.0	57.32
		2	20120910	CF	_14_DEC_20	120910_CS	Destin Ent	rance	CF_14_DEC_1	10.0	1.0	40.91
		3	20130823	CF	_14_DEC_20	130823_CS	Destin Ent	rance	CF_14_DEC_1	10.0	1.0	58.51

Name

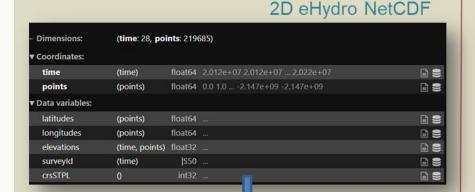
35.0 CF 01 PEC Florida North

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

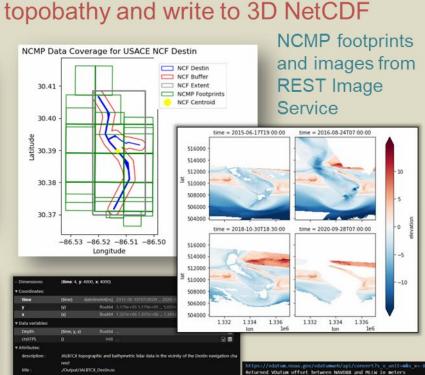
Projection

CCR_group

PENSACOLA


JALBTCX NCMP Topobathy Integration

• Workflow to format NCMP topobathy lidar for integration with CSAT's eHydro input.


(2) Query and extract NCMP

(1) Transform eHydro input from 2D to 3D NetCDF

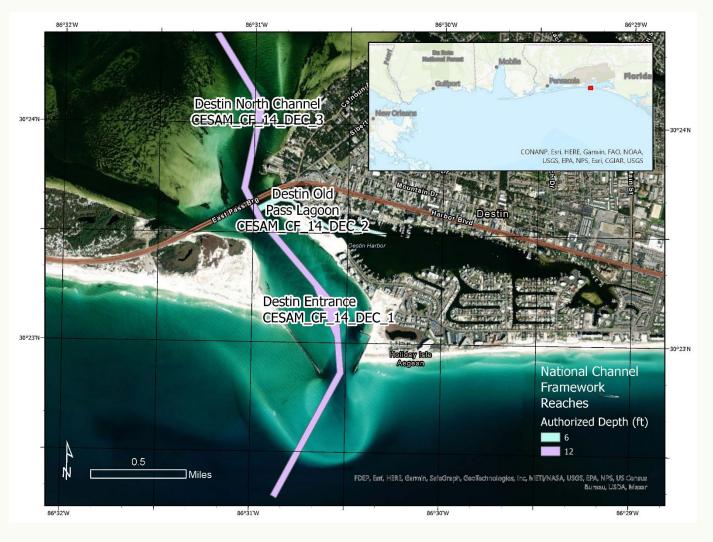
3D eHydro NetCDF

Dimensions:	(time: 28, latitude: 829, la	ongitude	e: 265)	
Coordinates:				
time	(time)	float64	2.012e+07 2.012e+07 2.022e+07	
latitude	(latitude)	float64	5.127e+05 5.126e+05 5.044e+05	
longitude	(longitude)	float64		
Data variables:				
elevations	(time, latitude, longitude)	float64		
surveyId	(time)	\$50		6
crsSTPL	0	int8		

3D NCMP NetCDF

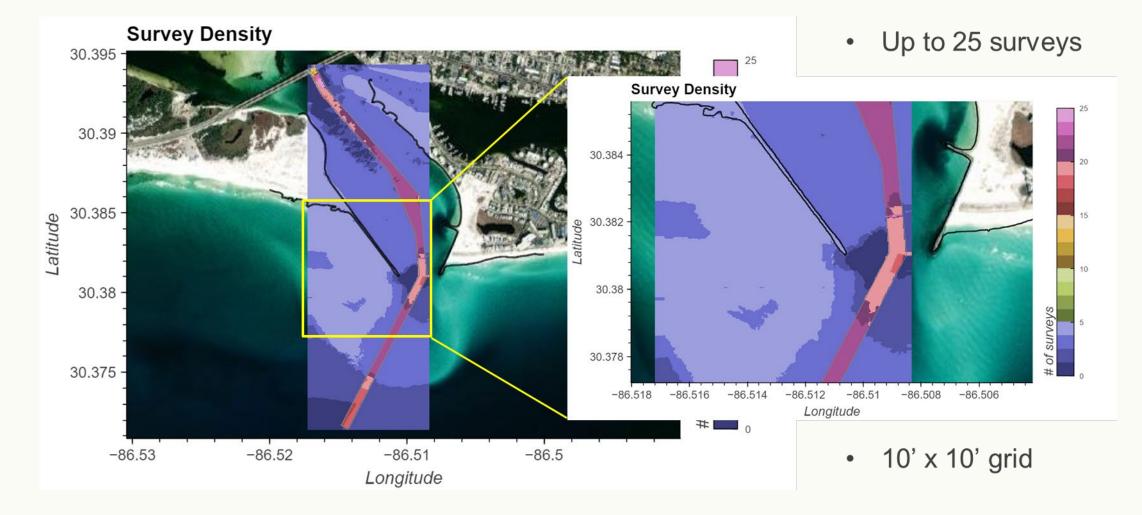
(3) Combine eHydro and NCMP 3D NetCDFs \rightarrow 2D

3D eHydro + NCMP NetCDF


python

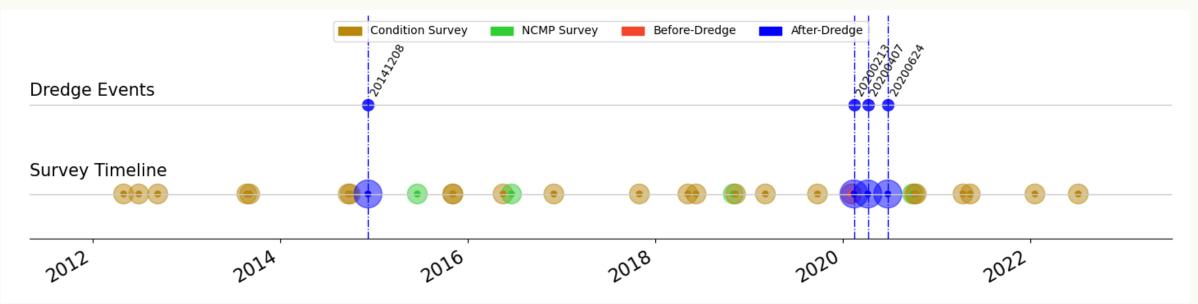
carray.Dataset				
- Dimensions:	(time: 32, y: 829, x	265, latitude: 829, lo	ngitude: 265)	
▼ Coordinates:				
time	(time)	datetime64[ns	1 - 2012-04-30 2022-07-06	
у	697	float6	4 5.127e+05 5.126e+05 _ 5.044e+05	
spatial_ref	0	int3.	2.0	
latitude	(latitude)	float6-		
longitude	(longitude)	float6-	4 1.333e+06 1.333e+06 1.335e+06	
Data variables:				
Depth	(time, y, x)	float6-	4 nan nan nan nan nan nan nan nan	
elevations	(time, latitude, long	itude) float6-	4 nan nan nan nan nan nan nan nan	
surveyld	(time)	objec		
CrSSTPL	0	inti	8 -127	88
Attributes: (10)				
	2D	CSAT	Input NetCl	DF
- Attributes: (10)	2D	CSAT	Input NetCl	DF
array.Dataset			Input NetCl	DF
array.Dataset Dimensions:	(time: 32, points: 2		Input NetC	DF
array.Dataset Dimensions: / Coordinates:	(time: 32, points: 2	219685)		DF
array.Dataset Dimensions: / Coordinates: time	(time: 32, points: 2 (time) int	2 19685) 132 20120430 201204	528 <u></u> 20220706	DF
array.Dataset Dimensions: / Coordinates:	(time: 32, points: 2 (time) int	219685)	528 <u></u> 20220706	DF
array.Dataset Dimensions: 2 Coordinates: time points	(time: 32, points: 2 (time) int	2 19685) 132 20120430 201204	528 <u></u> 20220706	DF
array.Dataset Dimensions: 2 Coordinates: time points	(time: 32, points: 2 (time) int	2 19685) 132 20120430 201204 132 0 1 2 3 219682	528 <u></u> 20220706	DF
array.Dataset Dimensions: Coordinates: time points Data variables:	(time: 32, points: 2 (time) int (points) int	219685) 132 20120430 201204 132 0 1 2 3 219682 164 nan nan nan nan	528 20220706 . 219683 219684	
array.Dataset Dimensions: Coordinates: time points Data variables: elevations	(time: 32, points: 2 (time) int (points) int (time, points) float	219685) 132 20120430 201204 132 0 1 2 3 219682 164 nan nan nan nan 164 5.044e+05 5.044e	528 20220706 219683 219684 	
array.Dataset Dimensions: Coordinates: time points Data variables: ekvations latitudes	(time; 32, points: 2 (time) int (points) int (time, points) Roat (points) Roat (points) Roat	219685) 132 20120430 201204 132 0 1 2 3 219682 164 nan nan nan nan 164 5.044e+05 5.044e	528 20220706 219683 219684 nan nan nan nan 2+05 5.127e+05 2+06 1.335e+06	
array.Dataset Dimensions: Coordinates: time points Data variables: elevations latitudes longitudes	(time; 32, points: 2 (time) int (points) int (time, points) Roat (points) Roat (points) Roat	119685) 32 20120430 20120 32 0 1 2 3 219682 464 nan nan nan nan 464 5.044e+05 5.044 464 1.333e+06 1.333	528 20220706 219683 219684 nan nan nan nan 2+05 5.127e+05 2+06 1.335e+06	

Case Study from East Pass Inlet (Destin, FL)


Overview

- Tidal connection between Gulf of Mexico and Choctawatchee Bay
- Authorized as Federal navigation channel in 1930 and re-authorized in 1951
- Dredged materials beneficially used for nourishment of beaches
- Develop understanding of broader shoaling patterns to inform dredging and nourishments
- Compare shoaling rates derived from combined eHydro + NCMP input vs. eHydro input alone

Case Study from East Pass Inlet (Destin, FL)


Spatial distribution of survey coverage

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

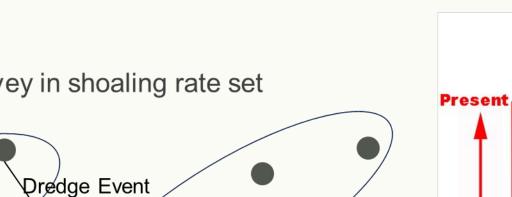
Case Study from East Pass Inlet (Destin, FL)

Temporal distribution of surveys and dredge events

- Dredge events define the aggregation of survey pairs
- NCMP survey dates represent the mid-point of data acquisition operations
- CSAT mosaics surveys within 10-day window by default, can override

CSAT Workflow – Survey Type

After-Dredge


- Comparison of elevation differences between surveys
- Identify After-Dredge surveys use as first survey in shoaling rate set

Before-Dredge

Rate₁

Used as last survey in shoaling rate set

Time

Rate₂

Time Series

Past

X

 $\sum (w_i \Delta z_i)$

 $\overline{m} = \text{mean}(m_{14}, m_{58})$

 $\overline{m} =$

Time Slice

Bin (x,y,z)

Volume Above Project Depth

CSAT Results – Shoaling Rates

eHydro Survey Input Alone

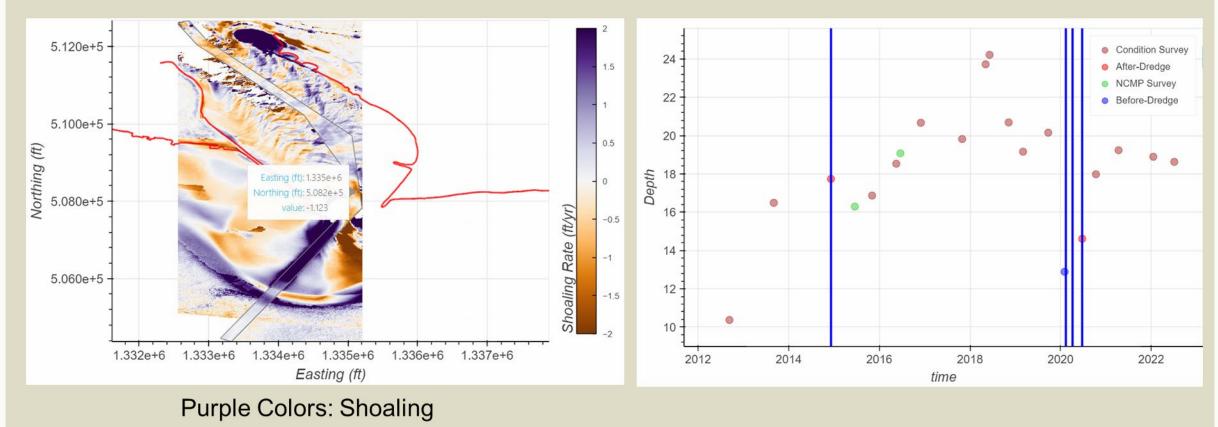
eHydro & NCMP Survey Input

UNCLASSIFIED

Purple Colors: Shoaling

Difference

Orange Colors: Deepening


Difference in Shoaling Rates (ft/yr) Value -15.8 - -4.4 hoaling Rate (ft/yr) Shoaling Rate (ft/vr) 02 - 17

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

CSAT Results – Shoaling Rates

Shoaling Rate Map

Depth Timeseries

Orange Colors: Deepening

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Summary and Future Work

Summary

- Quantitative analysis of navigation channels is critically important to supporting the USACE Navigation Mission Area
- The Corps Shoaling Analysis Tool (CSAT) provides shoaling rates within the boundary of the National Channel Framework (NCF) and predictions for future dredging volumes
- CSAT capabilities show potential for expansion beyond the NCF and opportunities for linkages with other tools to support Navigation O&M
- Semi-automated production of consistent data analytics for the Corps' coastal navigation portfolio ensures limited financial resources are rationally allocated according to channel maintenance needs

FY23 Advances in Capability

- Extending CSAT capabilities beyond the NCF
 - Formalizing workflow for integrating JALBTCX topobathy lidar data into CSAT's Input Generation routine
 - Adding capability for shoaling rate computations with user-supplied polygons
- Improved QA/QC Tools
 - Jupyter Notebooks with interactive widgets to explore input surveys, dredging events and intervals, and shoaling rates
- Documentation
 - Verification and validation of NavPortal Integration
 - Streamline installation and update the User Guide

Planned Outyear Products/Advances

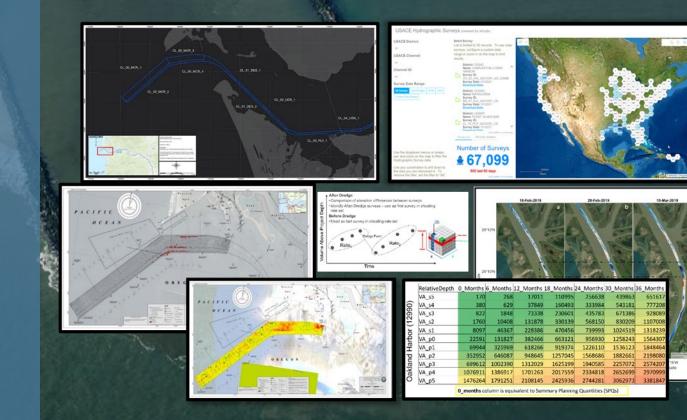
- Improved Datum Transformation Support
- Continued integration with USACE NavPortal web interface
- Implementation of additional shoaling rates

US Army Corps of Engineers • Engineer Research and Development Center • Coastal and Hydraulics Laboratory

Team

- Dr. Michael Hartman (PI)
- Dr. Rachel Bain
- Charlene Sylvester
- Lauren Dunkin
- Dr. Ned Mitchell

Contact


- Michael.A.Hartman@erdc.dren.mil
- <u>Charlene.S.Sylvester@usace.army.mil</u>

Website

https://cirp.usace.army.mil/products/csat.php

Thank You!

CSAT Corps Shoaling Analysis Tool

