CMS-WAVE BACKGROUND AND CAPABILITIES

Mitchell Brown Liz Holzenthal Honghai Li Lihwa Lin

Coastal & Hydraulics Laboratory US Army Engineer Research and Development Center (ERDC)

> CMS Basics Webinar Series 29 July – 02 August 2024

OVERVIEW OF CMS-WAVE

- Steady-state (time-independent), half-plane, twodimensional spectral transformation solved by finite-difference, forward-marching implicit scheme
- PC-based efficient model, stand-alone or coupled to CMS-Flow, a circulation and sediment transport model, through the SMS interface
- Emphasis on wave-structure-land interactions for practical coastal engineering projects

CAPABILITIES

- Wave diffraction, reflection (forward & backward), breaking, bottom friction dissipation
- Wind input, wave-current interaction
- Wave transmission at structures
- Wave run-up, overtopping, overland flow
- Variable grids with nesting
- Nonlinear wave-wave interaction & infra-gravity waves
- "Fast mode" for quick calculations & prelim runs

CMS-WAVE CAPABILITIES

	Capability	CMS-Wave
	Spectrum transformation	Directional
	Refraction & shoaling	Represented
	Depth-limited wave breaking	Choice among four formulas
	Roller	Represented
	Diffraction	Theory
	Reflection	Represented
	Transmission	Formulas
l	Run-up and setup	Theory
	Wave-current interaction	Theory
	Wave-wave interaction	Theory
	Wind input	Theory
	White capping	Theory
	Bottom friction	Theory

Structures

CMS-WAVE SMS 13.3 MODEL CONTROL

INCIDENT WAVE SPECTRUM

- NDBC/NOAA Ocean Buoys
- CDIP Coastal Buoys
- Project specific measurements (ADCP)

Theoretical spectra (SMS)

SMS WAVE SPECTRUM DISPLAY

JETTIES & BREAKWATERS WAVE DIFFRACTION AND REFLECTION

8

WAVE BREAKING FORMULAS

WIND-WAVE GENERATION

WAVE GENERATION MATAGORDA BAY, TX

VARIABLE RECTANGULAR-CELL GRIDS

CMS-WAVE ON VARIABLE GRIDS

GRID NESTING

WAVE RUNUP

Wave runup (*R*) – maximum vertical extent reached by any single broken wave as it rushes up a sloping beach or structure

Two-percent runup ($R_{2\%}$ or R_{2p}) – the runup level exceeded by only the largest 2-percent of runup values

Improved R_{2%} formulation under development. Preliminary methodology described in TR by Holzenthal and Johnson (2024*)

Floating Breakwater

An analytical formula of the transmission coefficient for a rectangle floating breakwater of width *B* and Draft *D* (Macagno 1953):

$$K_{t} = \left[1 + \left(\frac{\left(kB\sinh\frac{kh}{2\pi}\right)}{2\cosh k(h-D)}\right)^{2}\right]^{-1/2}$$

BOTTOM-MOUND BREAKWATER

Vertical wall breakwater (Kondo and Sato, 1985):

$$K_t = 0.3 \ (1.5 - \frac{h_c}{H_s}), \quad \text{for} \quad 0 \le \frac{h_c}{H_s} \le 1.25$$

Composite or rubble-mound breakwater:

$$K_t = 0.3 \ (1.1 - \frac{h_c}{H_s}), \quad \text{for} \quad 0 \le \frac{h_c}{H_s} \le 0.75$$

where h_c is the crest height (above mean water level) and H_s is the incident wave height.

IDEALIZED ISLAND EXAMPLE

IDEALIZED FLOATING BREAKWATER

IDEALIZED PLATFORM

CALCULATED WAVE OVERTOPPING R127 SURGE LEVEL = 1.3 M, H_S = 2.3 M, T_P = 14 SEC

CMS-WAVE FAST MODE *PRE-TEST USE ONLY*

- Fast mode uses 5 to 7 directional bins with spectral calculations (Standard runs with 35 directional bins)
- Ideal for quick applications, prelim runs, time-pressing project

COUPLING WITH CMS-FLOW

Breaching at Jetty, Simulation at Matagorda Ship Channel, TX

MSC JETTY WAVE RUN-UP & BREACHING CAT 3 HURRICANE (50-YR LIFE-CYCLE)

- Peak storm surge level reaches 3.5 m between Hrs 4 and 8
- Incident offshore wave is 7.6 m, 14.3 sec, from south

QUESTIONS?

US Army Corps of Engineers®

U.S. ARMY

Honghai Li

Mitchell Brown

Lihwa Lin

CMS Team

- Honghai.Li@usace.army.mil
 - Lihwa.Lin@usace.army.mil
- Mitchell.E.Brown@usace.army.mil
- Liz Holzenthal Elizabeth.R.Holzenthal@usace.army.mil
- Dylan Robinson Dylan.M.Robinson@usace.army.mil

50 THE BARE BLUNEADS CAN BE USED FOR LOCKES DAM

> PRESTRESSED-CONCRETE TRUNNON GROEP

NOTE: EANVERIGATE NOT SHONE

Fit 3179-500