CMS-WAVE: MODEL SETUP

Mitchell Brown Liz Holzenthal Honghai Li

Coastal & Hydraulics Laboratory US Army Engineer Research and Development Center (ERDC)

> CMS Basics Webinar Series 29 July – 02 August 2024

Presentations

- CMS-Wave grid creation
- CMS-Wave Spectra and Model Control

Demo

- Creating CMS-Wave grids
- Creating Wave Spectra from bulk criteria
- Importing Wave Spectra information from Wave Gauge/Buoy/WaveNet
- Export/Launch CMS-Wave
- Steering Interactive CMS-Flow and CMS-Wave

- inar
 Day4
 1-afterDay3
 Search 1-afterDay3

 Name
 Date modified
 Type
 Size

 Workshop_SharkRiver_13.3_data
 8/1/2024 9:43 AM
 File folder

 Workshop_SharkRiver_13.3.sms
 8/1/2024 9:43 AM
 SMS File
 2,954
- Load project from previous work
 - Files can be found in Day4/1-afterDay3 folder

- Load project from previous work
 - Files can be found in Day4/1-afterDay3 folder

- Load project from previous work
 - Files can be found in Day4/1-afterDay3 folder
- Right click on "Map Data"
 - New Coverage

- Load project from previous work
 - Files can be found in Day4/1-afterDay3 folder
- Right click on "Map Data"
 - New Coverage
 - Generic | Cgrid Generator
 - Rename to "CMS-Wave"

- Select CMS-Wave
- Select Create Grid Frame tool
- Define domain of CMS Wave grid by clicking three points –
- Starting offshore (1)
 moving toward shoreline
 (2), then other corner on
 land side (3)
- Note: Order **MUST** be correct
- Accuracy not required, we can edit afterward.

C

Click Select Grid Frame

• Click frame selector

tool

- You can now resize with \bullet corner or edge center points
- You can rotate around IJ Axis with handle
- Make sure to SAVE frequently as you go along.

** Note: the location of the IJ Triad. I-direction is directed onshore.

- Many times, we make the Wave Grid the same size or just a little larger than the Flow grid, unless the flow grid is very large.
- Turn off Scatter visibilityTurn on Quadtree visibility
 - Back side does not need to match the flow if the wave energy will most likely be dissipated.

DEFINE LOCATIONS FOR FINER RESOLUTION

UNCLASSIFIE

***.** •

Eile Edit Display Feature Objects Window Help _ & × 0 🖵 🧞 Vx: Quadtree Z Project Q 20.000 + Quadtree Data 17.500 Scatter Data 15.000 Merged ALL +?+ 12.500 . z 10.000 🗄 🕼 🛃 Map Data - 7.500 Area Property F - 5.000 Boundary Conditions - 2.500 •.• Activity Classification - 0.000 1 Quadtree Generator - -2.500 CMS-WAVE -5.000 🗄 🗖 🚺 GIS Data 🗄 🔽 🚟 Simulation Data Ш . (191874.0, 154140.0) 🏟 🗞 🖄 🎟 🖬 🔂 🐺 🌒 🏷 🏡 🏷 😓 💧 🗋 🖄 🏙 🔐 🧶

Resolution for Cartesian Grids is done with "refine points".

- Create feature points.
- Then select | right-click and set node attributes
- You can set refinement in:
 - I-direction
 - J-direction
 - Both
- Refinement starts at feature point center and increases outward.

DEFINE LOCATIONS FOR FINER RESOLUTION

UNCLASSIFIED

Eile Edit Display Feature Objects Window Help _ & × 🗋 📄 🖯 🗍 🚺 🔝 🔍 🖵 🧦 Vx: Quadtree Z Project Q 20.000 🕂 🔽 🙀 Quadtree Data 17.500 Scatter Data 15.000 Merged ALL +?+ 12.500 . z 10.000 🖃 💹 🛃 Map Data - 7.500 Area Property F - 5.000 Boundary Conditions - 2.500 •.• Activity Classification - 0.000 1/4 Quadtree Generator - -2.500 CMS-WAVE -5.000 🗄 🗖 🚺 GIS Data Convert to Vertices J. 🕂 🔽 🚟 Simulation Data Copy to Coverage ... Delete 囷 Define Domain Transform... A Ш Node Attributes... . Clear Selection × Invert Selection Refine Point 2 Zoom to Selecti Attributes Refine grid in I direction Base cell size: 10.0 Refine grid in J direction Base cell size: 10.0 (191874.0, 154140.0) 🗞 🗞 🕅 🎟 🖼 🐺 🌒 🏷 🏠 🏷 😓 💧 🗋 🕹 🚮 🔐 🧶 Help. OK Cancel

Resolution for Cartesian Grids is done with "refine points". *.*

- Create feature points.
- Then select | right-click and set node attributes 18
- You can set refinement in:
 - I-direction
 - J-direction
 - Both •
- Refinement starts at feature • point center and increases outward.

CREATE CARTESIAN GRID

- Right-click on CMS-Wave coverage in data tree
 - Convert | Map -> 2d Grid
 - Use refine points
 - Maximum cell size the size of the largest cells away from refine points.
 - Maximum bias determines how fast the increase in cell size away from refine points.
 - Use inner growth Unchecked, keeps cell resolution small until the next/last refine point.

Bias – 1.05

SPECTRAL INPUT

Project files saved at this point in - Day4/2-afterWaveCreate folder

- Turn on display of Quadtree grid to see both
- Add Spectral Coverage to Map Module
 - Right-click on "Map Data"
 - New Coverage
 - Generic | Spectral
- Add Feature Point for spectral information (normally middle of offshore edge)

SIMPLE SPECTRAL INPUT

				.
	Sel	lect	po	Int

- Right-click | Node Attributes
- Click Create Grid
 - Enter 167 degrees
 - Select "Local"
 - Click OK
- Click OK on Spectral Energy Grid dialog
- Define Spectral Energy Grid
 - Number bins (freq., dir.)
 - Set frequency bin ranges
 - Set direction bin ranges
 - Click OK

Spectral Energy		
-Spectral Manager	Spectral Viewer	
Create Grid Spectra.	View: Polar C Energy: 0.0	
Update Reference Time 26-Jul-2024 0:00 Units: hours		
-Integration Plots		
Direction		
Help		Done
	UNCLAS	SIFIED

SIMPLE SPECTRAL INPUT

Spectral Energy		×
Spectral Manager Create Grid Spectra	Spectral Viewer View: Polar Energy: 0.0 Polar Polar Polar Polar Polar Polar Energy: 0.0 Polar Polar Polar Polar Energy: 0.0 Polar Polar Polar Energy: 0.0 Polar Polar Polar Energy: 0.0 Polar	
Update Reference Time 26-Jul-2024 0:00 Units: hours Integration Plots Frequency Direction		
Help		Done

- Select point
 - Right-click | Node Attributes
- Click Create Grid
 - Enter 167 degrees
 - Select "Local"
 - Click OK
- Click OK on Spectral Energy Grid dialog
- Define Spectral Energy Grid
 - Number bins (freq., dir.)
 - Set frequency bin ranges
 - Set direction bin ranges
 - Click OK

SIMPLE SPECTRAL INPUT

- Select point
 - Right-click | Node Attributes
- Click Create Grid
 - Enter 167 degrees
 - Select "Local"
 - Click OK
- Click OK on Spectral Energy Grid dialog
- Define Spectral Energy Grid
 - Number bins (freq., dir.)
 - Set frequency bin ranges
 - Set direction bin ranges
 - Click OK

Spectral Energy	×
Spectral Manager Create Grid Spectra Create Grid Spectra Create Grid Spectra Update Reference Time 26-Jul-2024 0:00 Units: hours Integration Plots Frequency Direction	Spectral Viewer View: Polar Image: Constraint of the second sec
Help	Done
	UNCLASSIFIED

H

We need to enter the wave characteristic data to create a wave spectral grid.

• Click "Spectra"

Gene	rate Spectra								×
Par	rameter Settings						Angle Settings		
G	eneration Method: JON	ISWAP			-		Projection:	Shore Normal	-
	By Specifying: Hs a	and Tp			•				
D	irectional Spreading Distr O Wrapped Normal O Cosine Power	ibution:	Seaward B Spec 20.0 Spec	ounda ify onc 0 ify for e	ry Depth: e for all sp m each spec	ectra trum			
Sp	ectral Parameters								
	Time Offset (hrs)/Index	Angle (deg)	Hs (m)	Tp (s)	Gamma	nn			
1	0.0	20.0	3.0	8.0	3.3	4			
2	3.0	20.0	3.5	9.0	3.3	4			
3	6.0	20.0	4.0	10.0	3.3	4			
4									
	Import Import fr	rom GenCade	E	xport		elete All		Spectral	Defaults >>
	Help							Generate	Cancel

We need to enter the wave characteristic data to create a wave spectral grid.

Click "Spectra"

- Manually enter Wave Angle, Height, Period, and spectral defaults by hand entering or cut/paste from another location.
- Enter offshore grid depth

UNCLASSIFIED

Generate Spectra					×
Parameter Settings		Angle Settings	Spectral Defa	aults	
Generation Method: JONSWAP By Specifying: Hs and Tp	•	Projection: Shore	Double-click update selec row(s):	a row of valu cted spreads	es to heet
			Tp (s)	Gamma	ni 🗸
			10	3.3	4
	Seaward Boundary Depth:		11	4.0	8
Directional Spreading Distribution:	Specify once for all spectra		12	4.0	1(
O Wrapped Normal	20.0 m		13	5.0	12
Cosine Power	C Specify for each spectrum		14	5.0	16
			15	6.0	18
			16	6.0	20
Spectral Parameters			17	7.0	22
Time Offset (hrs)/Index Angle (deg)) Hs (m) Tp (s) Gamma nn		18	7.0	26
1 0.0 20.0	3.0 8.0 3.3 4		19	8.0	21 🗸
2 3.0 20.0	3.5 9.0 3.3 4		<		>
3 6.0 20.0	4.0 10.0 3.3 4				
4					
Import Import from GenCac	de Export Delete All				
Help		Gene			

H

We need to enter the wave characteristic data to create a wave spectral grid.

Click "Spectra"

Manually enter Wave Angle, Height, Period, and spectral defaults by hand entering or cut/paste from another location.

- Enter offshore grid depth
- Enter <u>Gamma</u> and <u>nn</u>
 - See "Spectral Defaults"

We need to enter the wave characteristic data to create a wave spectral grid.

Update Reference Time

SPECTRAL INPUT FROM GAUGE

Open						\times
Look in:	WaveSpectra		•	(= 🗈 🖶	·	
Quick access	Name WaveNet_W	^ W3_40.18N73.79W_2	20130101_2013	0118.eng	Date mod 9/11/2018	lified 9:26 AM
Desktop						
Lbranes This PC						
Network						
	<					>
	File name:	WaveNet_WW3_40	0.18N73.79W_2	0130101_2 🔻		Open
	Files of type:	All Files (*.*)		•] _	Cancel

There are tools to take information from gauges and buoys (CDIP/WW3/NDBC) and put in correct CMS-Wave format. We will discuss some of these in an Advanced Webinar.

- On the main screen, choose
 File | Open from the pulldown menus.
- Go to the "WaveSpectra" folder underneath Day 4.
- Select the "WaveNet..." file and Open.

🙆 Si

SPECTRAL INPUT FROM GAUGE

pectra Grid Info - Process ID: 28764		×		
		_		
opectra Location X:				
0.0				
Spectra Location y:				
0.0				
Grid Orientation Angle (CCW from East):				
0.0				
	Spectra Grid Info - P	rocess ID: 4456		×
	Spectra Location X:			
	195221.0			
_	Spectra Location y:			
	149704.0			
OK	Grid Orientation Angle	e (CCW from East):		
	176.0			
		ОК	Cancel Help	

There are tools to take information from gauges and buoys (CDIP/WW3/NDBC) and put in correct CMS-Wave format. We will discuss some of these in an Advanced Webinar.

 Enter the X/Y coordinates for the location of the Spectral Forcing (195221,149704)

- Enter the Grid Angle (176)
- Click OK

SPECTRAL INPUT FROM GAUGE

There are tools to take information from gauges and buoys (CDIP/WW3/NDBC) and put in correct CMS-Wave format. We will discuss some of these in an Advanced Webinar.

- A new coverage is created.
- Double-click the spectra point and open the spectral dialog.
- All times and spectra from the file are added to a new spectral grid.
- The reference time should already be set.

CREATE CMS-WAVE SIMULATION

Right click in open area in Data
 Tree and choose "New
 Simulation" | "CMS-Wave"

CREATE CMS-WAVE SIMULATION

- Right click in open area in Data Tree and choose "New Simulation" | "CMS-Wave"
- Right click on CMS-Wave Grid and choose "Apply to", then "CMS-Wave Simulations → Sim"

CMS-WAVE MODEL CONTROL

- 🞴 File Edit Display Feature Objects Window Help _ 8 × 🍐 🔄 🖄 😭 🎁 🕌 🥥 🛍 🂠 💼 📄 🗔 🖶 🧻 🚺 🚺 🖳 🖵 🦫 🎕 🜭 🎞 🖬 🦊 🌍 🍹 🖾 🎌 🥹 ÷ Cartesian Grid Module Elevation Merged ALL 20.00 17.22 **z**, z Ý - 14.44 Rename Map Data - 11.67 Duplicate - 8.89 Area Property 6.11 × Delete - 3.33 Boundary Conditions **T** - 0.56 Simulation Run Oueue... -2.22 - -5.00 1 Model Control... Quadtree Generator k Generate Snap Preview CMS-WAVE Model Check... 🗸 ݼ Spectral * Save Simulation • П GIS Data -/-Run Simulation Simulation Data R Save Project, Simulation and Run F CMS-Flow Simulations Read Solution F Activity Classi Properties... $\overline{\mathbb{A}}$ Boundary Cor Quadtree G CMS-Wave Simulations A H 🗄 🗸 👌 CMS-WAVE Grid Ę < (?, ?)
- Right click on CMS-Wave Simulations → CMS-Wave Grid
- CMS-WAVE menu option
 appears
- Choose Model Control

CMS-WAVE MODEL CONTROL

- Right click on CMS-Wave
 Simulations → CMS-Wave Grid
- CMS-WAVE menu option appears
- Choose Model Control
- Boundary control tab
 - Side 1 open boundary (always!)
 - Specified spectrum, Select...

Model Cont	trol					>
Parameters	Boundary control Output co	ontrol Options		Grid Preview		^
Internolation	• TDW ~			Gharrenew		
Computatio	onal spectral grid				CMS-WAVE Grid	_
	Frequency distribution	Angle distribution		156000 -	Side 2	
Number:	30	35			7	1
Delta:	0.01	Hz 5.0°	Select Spectral C	Coverage for Side 1	×	
Minimum:	0.04	Hz -85.0°	🗸 🚞 Map Data			
Sides			🗌 🤜 Spec	ctral		
Side 1: S Side 3: Z	pecified spectrum \checkmark Select	(none selected) Side 2: Side 4:			Side	1
Case data Shore nor	mal V Wind direction angle co	onvention			ie 4	
Populate fr 5/9/2019 1	rom Spectra Populate 12:00:00 AM Units: hours Set I	Reference Time		ОК	0001940001960	0
≣,≣	-					
	Time Wind Magni	tude Wind Direction				
<					>	. `
				ОК	Cancel He	lp

CMS-WAVE MODEL CONTROL

- Right click on CMS-Wave
 Simulations → CMS-Wave Grid
- CMS-WAVE menu option appears
- Choose Model Control
- Boundary control tab
 - Side 1 open boundary (always!)
 - Specified spectrum, Select...
 - Check box for Spectral map coverage

Model Control	×
Parameters Boundary control Output control Options	
Source: Spectral coverage \checkmark	Grid Preview
Interpolation: IDW \checkmark	CMS-WAVE Grid
Computational spectral grid Frequency distribution Angle distribution	156000 - Side 2
Number: 30 35	
Delta: 0.01 Hz 5.0°	Spectral Coverage for Side 1 ×
Minimum: 0.04 Hz -85.0°	lap Data
Sides Side 1: Specified spectrum Select (none selected) Side 2: Side 3: Zero spectrum Case data Shore normal Wind direction angle convention Populate from Spectra Populate	Spectral Side 1
5/9/2019 12:00:00 AM Units: hours Set Reference Time	OK Cancel 200019400019600
≡,≣-	
Time Wind Magnitude Wind Direction	~
	>
	OK Cancel Help

CMS-WAVE MODEL CONTROL

Source: Spectral coverage \checkmark Interpolation: IDW \checkmark	Grid Preview
Computational spectral grid Frequency distribution Angle distribution Number: 30 35 Delta: 0.01 Hz 5.0° Minimum: 0.04 Hz -85.0° Sides Side 1: Specified spectrum V Select Spectral Side 2: Open lateral boundary Side 3: Zero spectrum V Side 4: Open lateral boundary Side 4: Open lateral boundary Case data Shore normal V Wind direction angle convention Populate from Spectra Populate 1/1/2013 12:00:00 AM Units: hours Set Reference Time	156000 - 154000 - 152000 - 150000 - 148000 - 146000 - 146000 - 144000 - 190000192000194000196000
Time Wind Magnitude Wind Direction	

- Right click on CMS-Wave
 Simulations → CMS-Wave Grid
- CMS-WAVE menu option appears
- Choose Model Control
- Boundary control tab
 - Side 1 open boundary (always!)
 - Specified spectrum, Select...
 - Check box for Spectral map coverage
 - Set Reference Time (01/01/2013)

CMS-WAVE MODEL CONTROL

S Model Control	×
Parameters Boundary control Output control Options	
CMSWAVE plane mode: Half plane Source terms: Source terms and propagation Current interaction None Bottom friction Manning constant 0.025 Surge fields None Wind fields Constant value	
Limit wave inflation for winds >= 50 m/sec Matrix Solver Gauss-Seidel ∨ Number of threads: 1	
	OK Cancel Help

Modify options in Model Control as desired

- Bottom Friction type/value
- Wave breaking type
- Fast mode ON | OFF
- Extra output datasets
- Number of threads (processors)
- Wetting/Drying

• Runup

. . .

• Click OK

CMS-WAVE MODEL RUN

Save Project Right click on "Sim" under wave simulations.

- Save Simulation, then
- Run Simulation

Or

• Save Project, Simulation, and Run

CMS-WAVE MODEL RUN

Save Project Right click on "Sim" under wave simulations.

- Save Simulation, then
- Run Simulation

Or

Save Project, Simulation, and Run

COUPLED FLOW & WAVE: INLINE STEERING

Inline steering – wave-induced currents and radiation stress gradients *steer* flow towards updated solution

Adjustments to future water levels made with astronomical tide estimates to reduce the effect of a time lag in response.

COUPLED FLOW & WAVE: INLINE STEERING

Seneral Flow Sediment Transport Salinity/Tempera	ature Wave Wind Output
Start date/time: 1/1/2001 12:00 AM Simulation duration: 744.0 hou Ramp duration: 24.0 hou Second order skewness correction Hot start Initial conditions file File Write single hot start output file Single hot start time to write out: 48.0 Write recurring hot start file Auto hot start output interval: 0.5	hours v urs v hours v
Solution scheme Implicit Matrix solver: GMRES Threads	
Number of threads: 4	

Steering control in CMS-Flow model control

• Open Wave tab

CMS-Flow Model Control

COUPLED FLOW & WAVE: INLINE STEERING

Х

Steering control in CMS-Flow model control

- Open Wave tab
- Select drop-down menu...

c	_			11/			
General	Flow	Sediment Transport	Salinity/Temperature	wave	Wind	Output	
Wave info	ormation						
None		~					
None							
				ОК	Car	ncel	Help
							UNULAU

CMS-Flow Model Control

COUPLED FLOW & WAVE: INLINE STEERING

Х

Steering control in CMS-Flow model control

- Open Wave tab
- Select drop-down menu...

L Elour	Codiment Transport	Colinity/Tomporature	Wavo	Wind	Output	
FIOW	Sediment Transport	Salinity/Temperature	wave	wind	Output	
nformation						
	\sim					
e wave condi	tion					
steering						
			OK	(a)	ncel	Help
			UK		licer	neih

COUPLED FLOW & WAVE: INLINE STEERING

CMS-Flow Model Control				×
eneral Flow Sediment Transport S	alinity/Temperat	ture Wave	Wind Output	
Wave information				
Single wave condition $\ \lor$				
Significant wave height:	Dataset	(none selected)		
Peak wave period:	Dataset	(none selected)		
Mean wave direction:	Dataset	(none selected)		
Wave breaking dissipation:	Dataset	(none selected)		
Wave radiation stress gradients (m^3/s^2):	Dataset	(none selected)		

Steering control in CMS-Flow model control

- Open Wave tab
- Select drop-down menu...
 - Single wave condition

water level at high tide), but generally not recommended.

OK

Cancel

Help

UNCLASSIFIED

39

COUPLED FLOW & WAVE: INLINE STEERING

		^
eneral Flow Sediment Transport Salinity/Te	perature Wave Wind Output	
Wave information		
Inline steering \lor		
CMS-Wave file: File		
Steering interval: 0.0	hrs	
Wave water level prediction: Tidal plus variation $$		
Extrapolation distances		
Flow to wave: User specified \sim 0.0	m ~	
Wave to flow: User specified $ \smallsetminus $ 0.0	m ~	
	OK Cancel	Help

Steering control in CMS-Flow model control

- Open Wave tab
- Select drop-down menu...
 - Single wave condition
 - Inline steering

• Select CMS-Wave file (*.sim)

COUPLED FLOW & WAVE: INLINE STEERING

CMS-Flow Model Control		×		Stee	ring control in CMS-Flow
General Flow Sediment Transport Select CMS-Wave solution file W Select CMS-Wave solution file (Image: CMS-Wave solution file (Image: CMS-Wave solution file) (Image: CMS-Wave solution file) (Image: CMS-Wave solution file)	Salinity/Temperature Wave Win	d Output	earch CMS-WAVE Gri Type S SIM File	id P ize 1 KB	el control pen Wave tab elect drop-down menu Single wave condition Inline steering
 JD Objects Desktop Documents Downloads Music Pictures Videos Windows (C:) File name: 	 Make sure Cl Select *.sim f Workshop_Sl 	MS-Wave simul ile from Day4\4 harkRiver_13.3	lation has -afterMode _models\C	been Sa elContro CMS-Wa	oct CMS-Wayo file (*.sim) ved (exported) \\ ve\CMS-WAVE Grid\
			Open	Cancel	

General

CMS-Flow Model Control - Process ID: 23072

Flow

Wave information

Inline steering

CMS-Wave file:

Steering interval: 3.0

Extrapolation distances

Flow to wave: Automatic

Wave to flow: Automatic

Sediment Transport

 \sim

File

Wave water level prediction: Tidal plus variation ~

✓ 0.0

V 0.0

Salinity/Temperature

Wave

hrs

Workshop_SharkRiver_13.3_models/CMS-Wave/CMS-WAVE Grid/CMS-WAVE Grid.sim

Wind

Output

COUPLED FLOW & WAVE: INLINE STEERING

Steering control in CMS-Flow model control

- Open Wave tab
- Select drop-down menu...
 - Single wave condition
 - Inline steering

- Select CMS-Wave file (*.sim)
- Define steering interval (frequency of information exchange)
- Always set extrapolation distance from <u>User specified</u> to <u>Automatic</u> if you are not entering a good value for distance.

QUESTIONS?

US Army Corps

of Engineers®

U.S. ARMY

Honghai Li

Mitchell Brown

Lihwa Lin

ERD(

CMS Team

- Honghai.Li@usace.army.mil
- Lihwa.Lin@usace.army.mil
- Mitchell.E.Brown@usace.army.mil
- Liz Holzenthal Elizabeth.R.Holzenthal@usace.army.mil
- Dylan Robinson Dylan.M.Robinson@usace.army.mil

SPICS

110-010,EAR SO THE EARE BULKHEADS CALLER VIED FOR LOCKES DAM

> PRESTRESSED-CONCRETE TRUNKION GROEP

NOTE: TANTER GATE NOT SHOWN