CMS-Wave Background and Capabilities

Developed for coastal and inlet applications

Research & Development

Lihwa Lin, PH.D

Research Hydraulic Engineer

U.S. Army Engineer Research and Development Center

US Army Corps of Engineers
BUILDING STRONG®

Outline

- Overview of CMS-Wave
- Capability
- Governing equations
- Incident wave spectrum
- Wave-current interaction
- Diffraction and reflection
- Wind input and wave dissipation
- Wave run-up, overtopping, & new features
- Coupled operation and future development
- Conclusions

1. Overview of CMS-Wave

- Steady-state (time-independent), half-plane, twodimensional spectral transformation solved by finite-difference, forward-marching implicit scheme
- PC-based efficient model, stand-alone or coupled to CMS-Flow, a circulation and sediment transport model, through the SMS interface
- Emphasis on wave-structure-land interactions for practical coastal engineering projects

2. Capabilities

- Wave diffraction, reflection (forward & backward), breaking, bottom friction dissipation
- Wind input, wave-current interaction
- Wave transmission at structures
- Wave run-up, overtopping, overland flow
- Variable grids with nesting
- Nonlinear wave-wave interaction & infra-gravity waves
- "Fast mode" for quick calculations & prelim runs

Structures

CMS-Wave and STWAVE

CMS-Wave and STWAVE (half-plane) Comparison						
Capability	CMS-Wave	STWAVE				
Spectrum transformation	Directional	Directional				
Refraction & shoaling	Represented	Represented				
Depth-limited wave breaking	Choice among four formulas	One formula				
Roller	Represented	None				
Diffraction	Theory	Smoothing				
Reflection	Represented	None				
Transmission	Formulas	None				
Run-up and setup	Theory	None				
Wave-current interaction	Theory	Theory				
Wave-wave interaction	Theory	Semi-empirical				
Wind input	Theory	Semi-empirical				
White capping	Theory	Semi-empirical				
Bottom friction	Theory	Theory				

CMS-Wave SMS 11.0 Interface

3. Governing Equation

Wave-Action Balance Equation with Diffraction

$$\frac{\partial [(c_{gx}+u)A]}{\partial x} + \frac{\partial [(c_{gy}+v)A]}{\partial y} + \frac{\partial [c_{g\theta}A]}{\partial \theta} = \frac{\kappa}{2\sigma} \{(cc_g \cos^2\theta A_y)_y - \frac{1}{2}cc_g \cos^2\theta A_{yy}\} + S_{in} + S_{dp}$$
 where $A = E/\sigma$, wave-action spectrum

and $E = E(\sigma, \theta)$, wave directional spectrum.

Note: x is normal to the offshore boundary; y is parallel to the offshore boundary

4. Incident Wave Spectrum

NDBC/NOAA Ocean Buoys

CDIP Coastal Buoys

Project specific measurements (ADCP)

Theoretical spectra (SMS)

Theoretical Spectrum

equency Spectrum

A single input spectrum applied along the seaward

boundary,

e.g., a JONSWAP type:

$$E = \frac{\alpha g^2}{\sigma^5} \exp(-0.74 \frac{\sigma_0^4}{\sigma^4}) \gamma^a D(\sigma, \theta)$$

where

$$D(\theta) = \frac{2^{S}}{\pi} \frac{\Gamma(S/2+1)}{\Gamma(S+1)} \cos^{S}(\theta - \theta_{o})$$

for
$$|\theta - \theta_o| < \pi/2$$

Idealized Directional Distribution

SMS10.1 Wave Spectrum Display

5. Wave-Current Interaction

Solving for wave number k in dispersion equation with a current:

$$\sigma = \sqrt{gk \tanh kh} + ku \cos \theta + kv \sin \theta$$

Computing wave radiation stresses:

$$S_{xx} = E[n(\cos^2\theta + 1) - \frac{1}{2}],$$

$$S_{yy} = E[n(\sin^2 \theta + 1) - \frac{1}{2}],$$

$$S_{xy} = E \frac{n}{2} \sin 2\theta$$
, where $n = \frac{1}{2} + \frac{kh}{\sinh 2kh}$

6. Jetty Breakwater Wave Diffraction and Reflection

Infra-gravity Waves at Humboldt Bay, CA

7. Wind-Wave Generation

Wave Breaking Formulas

Wave Generation in Matagorda Bay, TX

Variable Rectangular-Cell Grids

Variable-rectangular cells Total 223 x 172 cells

Square (20 m x 20 m) cells Total 316 x 426 cells

CMS-Wave on Variable Grids

Variable-rectangular cells Total 223 x 172 cells

Square (20 m x 20 m) cells Total 316 x 426 cells

Grid Nesting

Regional Wave Generation Incident Waves: 12.9 m, 13.8 sec, from S

Max Surge: 3.5 m (Return Period = 50 yrs)

8. Wave Run-up

Wave run-up: rush of waves up a slope or structure

Two-percent run-up, R2: the vertical up-rush level exceeded by 2-percent of the larger run-up height

Ahrens & Titus (1981), Mase & Iwagaki (1984) ~ 400 laboratory experiments

Wave Run-up Calculation

Total run-up R2 = wave setup + 2% exceedance of swash level

Wave setup:
$$\frac{\partial \eta}{\partial x} = -\frac{1}{\rho gh} \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y} \right), \quad \frac{\partial \eta}{\partial y} = -\frac{1}{\rho gh} \left(\frac{\partial S_{xy}}{\partial x} + \frac{\partial S_{yy}}{\partial y} \right)$$

Max setup (Guza and Thornton, 1981): $\eta_{\text{max}} = 0.17 H_0$

Total runup R2 (2% exceedance) = 2 η_{max} (Komar, 1998)

Max water level = max of ($\eta + H_s/2$, R2)

^{*} Wave setup and max water level field are saved in setup.wav

Specify Feature Cells in SMS11.0

Floating Breakwater

An analytical formula of the transmission coefficient for a rectangle floating breakwater of width *B* and Draft *D* (Macagno 1953):

$$K_{t} = \left[1 + \left(\frac{kB \sinh\frac{kh}{2\pi}}{2\cosh k(h-D)}\right)^{2}\right]^{-\frac{1}{2}}$$

Bottom-Mound Breakwater

Vertical wall breakwater (Kondo and Sato, 1985):

$$K_t = 0.3 \ (1.5 - \frac{h_c}{H_s}), \quad \text{for } 0 \le \frac{h_c}{H_s} \le 1.25$$

Composite or rubble-mound breakwater:

$$K_t = 0.3 \ (1.1 - \frac{h_c}{H_s}), \quad \text{for } 0 \le \frac{h_c}{H_s} \le 0.75$$

where h_c is the crest height (above mean water level) and H_s is the incident wave height.

Idealized Island Example

Idealized Floating Breakwater

Idealized Platform

Submerged Platform

Wave Transmission Experiment (Goda, 2000)

Transmission coefficients k_t

 $H_i = 1 \text{ m}$, Tp = 6 sec (monochromatic wave)h = 10 m, d = 5 m, B = 80 m

h_c (m)	CMS-Wave		Equations		
	Vertical wall	Rubble mound	Vertical wall	Rubble mound	
-2.0	1.02	1.02			
-1.5	1.03	1.03			
-1.0	0.78	0.78			
-0.5	0.63	0.63			
0.0	0.46	0.34	0.45	0.33	
0.5	0.27	0.18	0.30	0.18	
1.0	0.15	0.04	0.15	0.03	
1.5	0.10	0.024			
2.0	0.07	0.018			

Wave overtopping: Surge level = 0.81 m (3 ft) Hs = 0.88 m, Tp = 10.1 sec (Hughes, 2008)

Coastal Modeling System Basics Webinar

Calculated Wave Overtopping R127 Surge level =1.3 m, Hs =2.3 m, Tp =14 sec

Calculated Wave Overtopping Rate

Case number	Surge Wave height (m)	Wave peak	Overtopping rate (m²/sec)			
		height (m)	period (sec)	Measured	CMS-Flow	CMS-Wave
R128	0.29			0.27	0.28*	
	0.29	0.82	6.1	0.38	0.38	0.39
R109	0.29			0.26	0.28*	
	0.29	2.48	13.7	0.70	0.85	0.92
R121	1.3			2.55	2.57*	
	1.3	2.30	6.1	2.67	2.93	2.76
R127	1.3			2.54	2.57*	
	1.3	2.31	14.4	2.84	2.98	2.81

Muddy Bottom

Wave dissipation by damping (Lamb, 1932):

$$S_{dp} = -4(\nu_k + \nu_t)k^2E$$

where ν_k is the kinematic viscosity of sea water,

and v_t is the turbulent eddy viscosity:

$$v_t = v_{t,breaking} \frac{H_s}{h}$$

Louisiana Muddy Coast Simulation

CMS-Wave Fast Mode (Simplified Formulation)

- Fast mode uses 5 to 7 directional bins with spectral calculations (Standard runs with 35 directional bins)
- Ideal for quick applications, prelim runs, time-pressing project

Nonlinear Wave-Wave Interaction

$$\frac{DA}{Dt} = S_{\text{diffraction}} + S_{in} + S_{dp} + S_{nl}$$

where S_{nl} is the nonlinear wave-wave interaction term

Anisotropic
$$S_{nl}$$
:

Anisotropic
$$S_{nl}$$
: $S_{nl} = a(\sigma) \frac{\partial B}{\partial \sigma} + b(\sigma) \frac{\partial^2 B}{\partial \theta^2}$ (Jenkins & Phillips, 2001)

where
$$a = \frac{1}{2n^2} [1 + (2n-1)^2 \cosh 2kh] - 1$$
, $b = \frac{a}{n\sigma}$

and
$$B = k^3 \sigma^5 \frac{n^4}{(2\pi)^2 g} [(\frac{\sigma_o}{\sigma})^4 E]^3$$

Exact and Calculated $S_{nl}(f)$

Spectral Evolution and $S_{nl}(f,\theta)$

$$\gamma = 5$$

Nonlinear Wave Effect

9. Coupling with CMS-Flow

Breaching at Jetty, Simulation at Matagorda Ship Channel, TX

MSC Jetty Wave Run-up & Breaching Cat 3 Hurricane (50-Yr Life-Cycle)

- Peak storm surge level reaches 3.5 m between Hrs 4 and 8
- Incident offshore wave is 7.6 m, 14.3 sec, from south

MSC Jetty Wave Run-up & Breaching Cat 3 Hurricane (50-Yr Life-Cycle)

Storm surge over the initial bathymetry

South Jetty breach in 12-hr simulation

- Peak storm surge level reaches 3.5 m between Hrs 4 and 8
- Incident offshore wave is 7.6 m, 14.3 sec, from south

Calculated 30-day Morphology Change Tombolo Development

CMS
Steering Interval
= 4 hr

Grain Size = 0.18 mm

Hydro time step = 0.25 sec

Transport and morphology calc time step = 9 sec

10. Future Development

- Telescoping grids
- Dynamic memory
- Full-plane transformation

Conclusions

- CMS-Wave designed for wave-structure-land interactions for inlet and nearshore applications
- Coastal inlet-specific processes represented
- Emphasis on computational speed and SMS integration for PC users
- Coupled to CMS-Flow for sediment transport and morphology change

References & Contacts

- 1. Lin, L., H. Mase, F. Yamada, and Z. Demirbilek. 2006. Wave-Action Balance Equation Diffraction (WABED) Model: Tests of Wave Diffraction and Reflection at Inlets. ERDC/CHL CHETN-III-73.
- 2. Zheng, J., H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave mode. *Ocean Engineering*. Vol. 35., pp.1090-1101.
- 3. Lin, L., Z. Demirbilek, H. Mase, J. Zheng., and F. Yamada. 2008. CMS-Wave: A Nearshore Spectral Wave Processes Model for Coastal Inlets and Navigation Projects. ERDC/CHL TR-08-13.

CMS-Wave Lihwa.Lin@usace.army.mil