

Introduction to GenCade

Ashley Frey

Research Civil Engineer, Co-PI of the Inlet Engineering Toolbox work unit of CIRP

US Army Corps of Engineers.

Outline

- What is GenCade?
- Background, overview, and conceptual coverage
- GenCade capabilities
- GenCade limitations and assumptions
- Workflow
- Model theory and formulation
- I/O Files and Cards

Innovative solutions for a safer, better world

ERDC

GENESIS + Cascade → GenCade

Cascade (top to bottom)

- Planning tool (RSM Support)
- Time scales: months to centuries
- Multiple inlets, shoals, and barrier islands; cumulative impacts; retains curvature of regional geomorphology
- Fast
- Typical grid resolution ~ 500 m

GENESIS (bottom to top)

- Engineering design tool
- Can represent all engineering details – structures, etc.
- Mature technology big payback by updating
- Typical grid resolution ~ 25 m

Strategy: Add Cascade capabilities to GENESIS to automatically include all GENESIS features

BUILDING STRONG®

Innovative solutions for a safer, better world

GENESIS + Cascade → GenCade

- Integrate from planning through engineering design
- Cover time scales from one year to centuries
- Preserve regional trends
- Furnish regionally consistent boundary conditions to local projects
- Represent cumulative local projects interacting regionally
- Represent inlet bypassing and tidal delta evolution
- Resolve engineered elements
- Include variable grid resolution for accuracy and efficiency
- Improve computational efficiency (over GENESIS)

Strategy: Add Cascade capabilities to GENESIS to automatically include all GENESIS features

BUILDING STRONG®

Innovative solutions for a safer, better world

GenCade Conceptual Processes: Coastal Sediment Dynamics

Flood shoal

erosion Coastal Structures: • Impoundment • Bypassing

Cross-shore Transport

~150,000 m³/yr

Barrier Island

1 CEA

/ind-blown sand

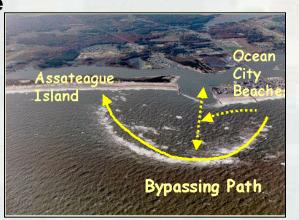
Overwash

1-02

Atlantic Ocean

Ebb shoal

11-17-04


Fire Island

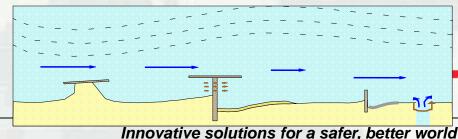
0.27 (W) 0.38 (E)

GenCade Applicability

Regional processes, Long-term morphology change

BUILDING STRONG®

- Regional Sediment Management
 - Beach fills
 - Inlet bypassing
 - Channel maintenance
- <u>Unifying technology</u> for multiple projects
- Intuitive interface (SMS)



Innovative solutions for a safer, better world

Model Functionality and Capabilities

- Variable resolution grids
- Inlet bypassing
- Inlet Reservoir Model for calculation of shoal and inlet feature sediment balance
- Representation of regional morphologic trends
- Multiple wave input forcing locations
- Representation of coastal structures: groins, jetties, seawalls, t-head groins, breakwaters, etc.
- Calculation of salients and tombolos behind breakwaters
- Time-dependent detached breakwater transmission
- Efficient calculation of breaking wave properties in internal wave model

BUILDING STRONG®

GenCade Assumptions

- Beach profile maintains a constant average shape
- Longshore transport occurs only between top of berm and depth of closure (or active transport)
- Sand transported alongshore by breaking waves is not affected by nearshore current patterns
- There is a long-term trend in shoreline evolution
- The detailed structure of the nearshore circulation is ignored

BUILDING STRONG_®

Innovative solutions for a safer, better world

ERDC

General Workflow

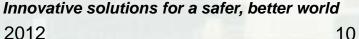
- Coastal Problem
 - Formulate question
 - Identify constraints
 - Develop criteria to review and evaluate the solutions
- Assemble and analyze relevant input data
- Develop engineering solutions and alternatives
- Develop and execute GenCade to optimize project solutions and alternatives
- Calibrate, Validate, Evaluate Alternatives
- Evaluate results

BUILDING STRONG®

Innovative solutions for a safer, better world

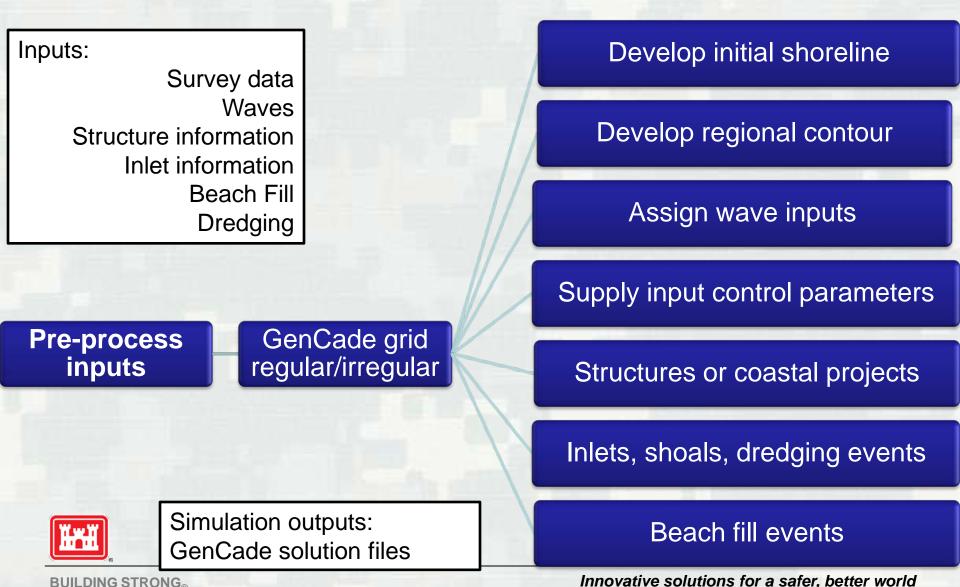
ERDC

GenCade Workflow


- Compile project data
- Assimilate data as GenCade forcing or BC input
- Develop conceptual model from input data
- Develop GenCade project grid and alternatives
- Execute calibration simulations/sensitivity tests
- Review and analyze calibration results
- Refine setups
- Execute production simulations
- Review results
- Analyze and post-process results

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012



Post-Process

ERDC

Simulate

GenCade Workflow

BUILDING STRONG

GenCade Workflow

GenCade Solution files; Measured Data

Post-process

Transport rates

Sediment budgets

Shoreline Change

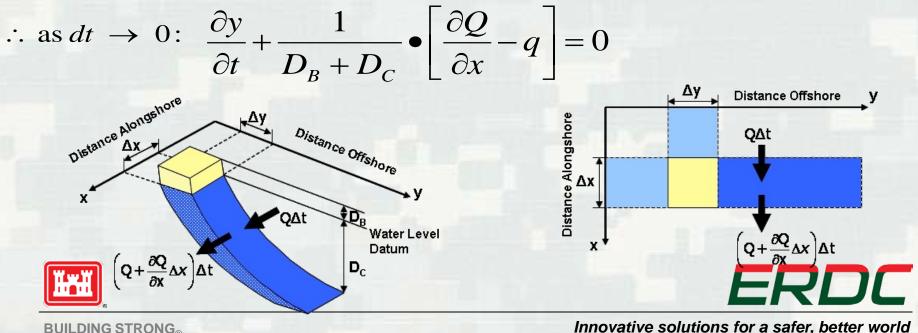
Inlet bypass/shoal evolution

BUILDING STRONG®

Post-process outputs: Calculations, figures, images, exported data Compare measured

Compare alternatives

Innovative solutions for a safer, better world


Model Formulation

Longshore Net Volume Change:

$$\frac{dQ}{dt} = \left(\frac{\partial Q}{\partial x}\right) dx dt$$

Cross-shore Net Volume Change: dqdt

Total Volume Change: $dV = dxdy(D_B + D_C) = \left(\frac{\partial Q}{\partial x}\right)dxdt + qdxdt$

BUILDING STRONG

Model Formulation

Sediment transport rate Q (m³/s):

$$Q = \left(H^2 C_g\right)_b \left(a_1 \sin 2\alpha_{bs} - a_2 \cos \alpha_{bs} \frac{\partial H}{\partial x}\right)$$

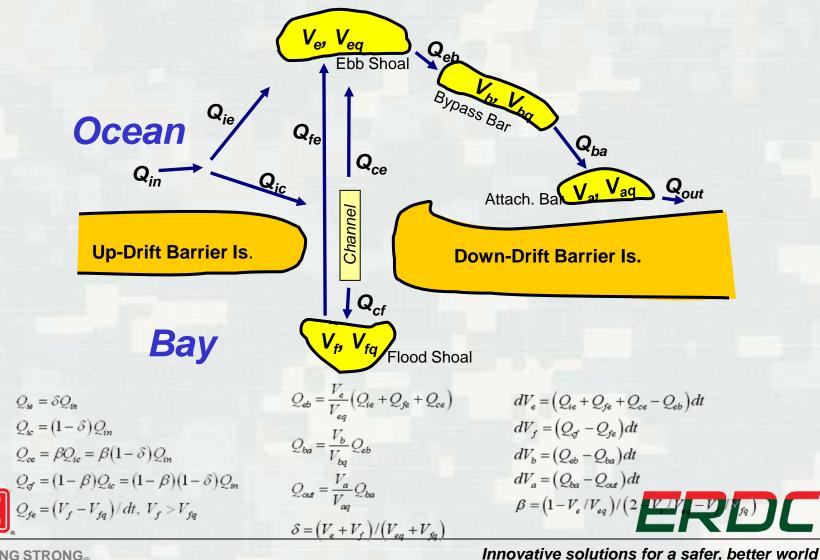
DD

Where, H = wave height (m) C_g =wave group speed (m/s) α_{bs} = angle of the breaking

$$a_1 = \frac{K_1}{16(\rho_s / \rho - 1)(1 - p)1.416^{5/2}}$$

$$a_2 = \frac{K_2}{8(\rho_s / \rho - 1)(1 - p) \tan \beta \ 1.416^{5/2}}$$

BUILDING STRONG®


Typically, value of K_2 is: $0.5K_1 < K_2 < 1.5K_1$

Where,

 K_1 = Primary empirical transport coefficient (controls magnitude of longshore transport rate) K_2 = Secondary empirical transport coefficient (controls distribution of sand within an area; esp. where large wave height gradients, e.g. salients) tan β = average bottom slope

Innovative solutions for a safer, better world

Inlet Reservoir Model Inlet bypassing and evolution of inlet deltas

BUILDING STRONG®

Output File Format for GenCade

Instantaneous Net Transport at Output Time (*.qtr) File

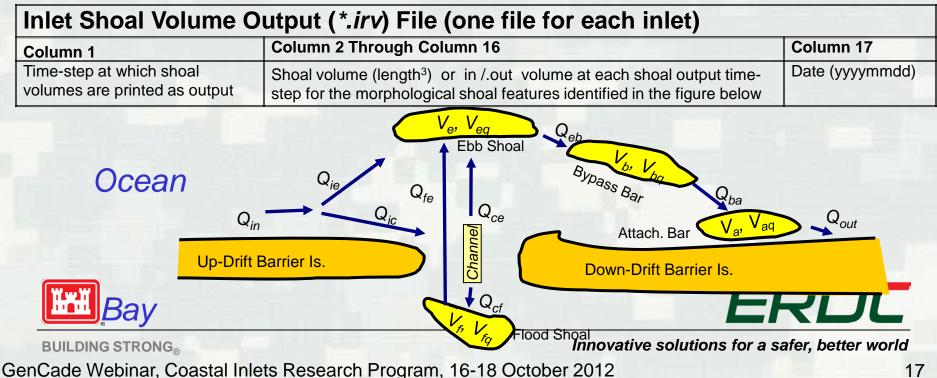
Column 1	Column 2 through Column NX
Date (yyyymmdd)	Net sediment transport (length ³ /year) for each grid cell

Mean Net Transport Over Simulation or Specified Time (*.mqn) File	
Column 1	Column 2 through Column NX
	Net sediment transport (length ³ /year) for each grid cell averaged over entire simulation (and optionally from start to specified times)

Mean Left Transport Over Simulation or Specified Time (*.mql) File	
Column 1	Column 2 through Column NX
Date (yyyymmdd)	sediment transport (length ³ /year) to left for each grid cell averaged over entire simulation (and optionally from start to specified times)

Mean Right Transport Over Simulation or Specified Time (*.mqr) File	
Column 1	Column 2 through Column NX
Date (yyyymmdd)	sediment transport (length ³ /year) to right for each grid cell averaged over entire simulation (and optionally from start to specified times)

ERDC


BUILDING STRONG®

Innovative solutions for a safer, better world

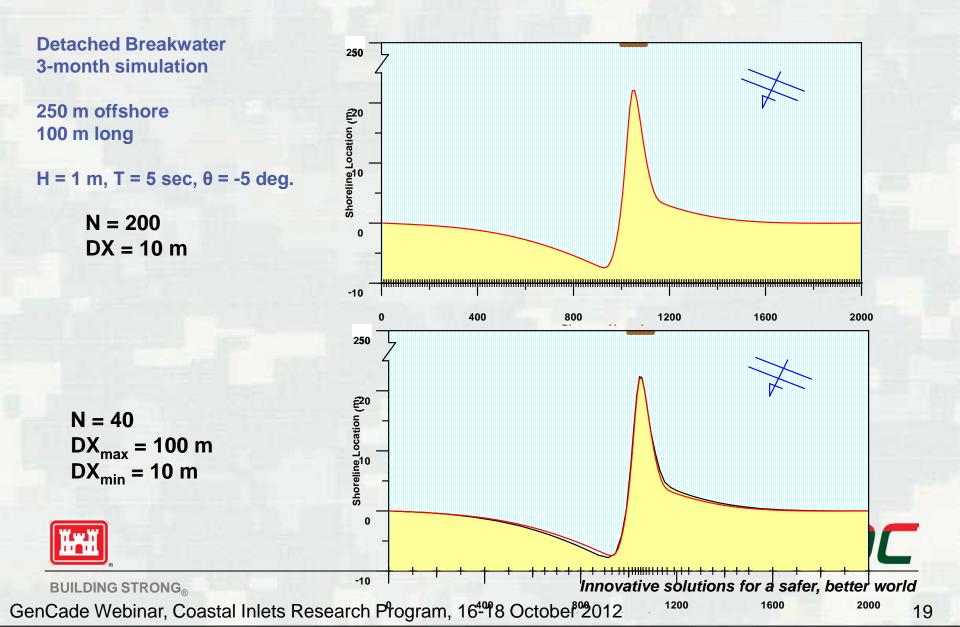
Output File Format for GenCade

Shoreline Position at Output Time (*.slo) File	
Column 1	Column 2 through Column NX
Date (yyyymmdd)	Y-position of shoreline (length unit) for each grid cell

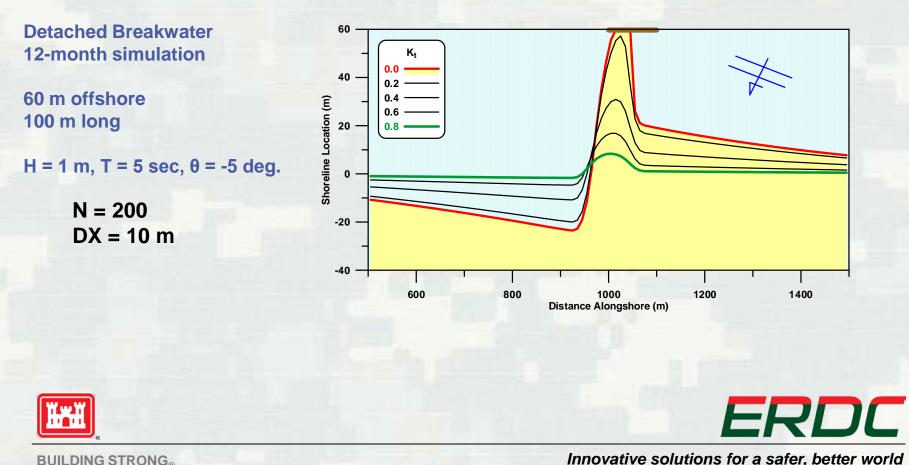
Calculated Offshore Contour at Out	tput Time (*.off) File
Column 1	Column 2 through Column NX
Date (yyyymmdd)	Y-position of offshore contour applied to wave transformation (length unit) for each grid cell

GenCade Input Cards

- TITLE Title of simulation run
- INIFILE Path and name of initial shoreline file
- REGFILE Path and name of regional shoreline file
- NUMWAVES Number of wave input locations/files
- WAVEID Cell ID; Depth; number of wave events; and file path/name of wave input data (1 WAVEID line/file)
- PRFILE Path and name of printed output file
- GENUNITS (ft) or (m) System of units for model I/O
- X0 X-origin
- Y0 Y-origin
- AZIMUTH Angle (deg) of grid rotation about origin
- NX Number of alongshore cells
- DX Cell resolution or -1 indicates variable resolution
- SIMDATS YYYYMMDD Start date of simulation
- SIMDATE YYYYMMDD Ending date of simulation
- DT 1.0 Time step in hours
- DTSAVE 10.0 Data (shoreline/transport) output times
- K1 0.5 Longshore sediment transport coefficient 1
- K2 0.25 Longshore sediment transport coefficient 2
- PRTOUT Output to PRFILE yes (t), no (f)
- PRWARN Print warnings yes (t), no(f)
- PRDATE Dates to save simulated shoreline
- ISMOOTH 11 #cells in offshore contour smoothing
 - IREG Include regional contour (1 = yes; 0 = no)


BUILDING STRONG_®

- HAMP 1.0 Height amplification factor
- THETAAMP 1.0 Angle amplification factor
- THETADEL 0.0 Angle offset
- LMOVY 0.0 Leftward shoreline displacement velocity
- D50 0.33 Grain size diameter in millimeters
- BERMHT 2 Average berm height
- DCLOS 8 Depth of closure
- LBCTYPE 0 Left boundary condition type
- LMOVY 0.0 Leftward shoreline displacement velocity
- LMOVPER 1 Simulation period (0), day(1), time step (2) period for LMOVY
- LGROINY 0.0 Length of left groin from shoreline to seaward tip
- RBCTYPE 0 Right boundary condition type
- RMOVY 0.0 Rightward shoreline displacement velocity
- RMOVPER 1 Simulation period (0), day(1), time step (2) period for RMOVY
 - RGROINY 0.0 Length of right groin from shoreline to seaward tip


ERDC

Innovative solutions for a safer, better world

GenCade – Variable Grid Alongshore

GenCade – Transmissive Breakwater

BUILDING STRONG®

Ashley Frey Ashley.E.Frey@usace.army.mil

http://cirpwiki.info/wiki/GenCade http://cirp.usace.army.mil/products

BUILDING STRONG®

ERDC

Innovative solutions for a safer, better world