

GenCade Applications

Ashley Frey

Research Civil Engineer, Co-PI of the Inlet Engineering Toolbox work unit of CIRP

US Army Corps of Engineers.

Documentation

- Long Island, NY
- Onslow Bay, NC
- St. Johns County, FL
- Sargent Beach, TX
- Matagorda Peninsula, TX

Beaufort Inlet, NC

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

Point Lookout, NY – Study Area

Point Lookout, NY – Model Setup

Modified Wave input to account for shoaling and sheltering

Point Lookout, NY - Results

Point Lookout, NY - Results

Modeling Results

Results of Alternatives

- a) No action is not feasible for the SDR Project requirements
 - I. Two additional groins had greatest effect on shoreline position, with little difference between the full length and shortened groins
 - II. Four groins show greater shoreline accretion across Hempstead Beach, providing long-term stability for the erosion hotspot
 - III. Terminal groin extension provides additional sand retention
 - IV. Reoccurring nourishments are critical to project success
- b) Long-term stability of shoreline at erosional hotspot can be mitigated with frequent nourishments. Structures spanning the erosional area were modeled and found to increase accretion at the shoreline, suggesting structures will best mitigate shoreline control.
- c) GenCade was successful in evaluating long-term effects to the shoreline for the 50-year planning period

Onslow Bay, NC – Problem Statement

Use GenCade to

- Improve understanding of the regional sediment system
- Provide information for a sediment budget

Boque Banks near Boque Inlet

North weir jetty at Masonboro Inlet ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

Onslow Bay, NC - Overview

BUILDING STRONG_®

Onslow Bay - Procedure

Innovative solutions for a safer, better world

BUILDING STRONG®

Secondary - East Grid Setup

Beach Location	Date	Added Berm width (ft)
Fort Macon	2002	37.0
Pine Knoll Shores	2002	40.0
Indian Beach	2002	57.0
Emerald Isle (phase 2)	2003	51.0

Beaufort Inlet 1997 initial shoal volume estimated by subtracting yearly shoal volume change calculated by Olsen (2006) from the volume of the 2004 survey

Used USACE published beach fill volumes

Used yearly maintenance dredging records and split volumes into East and West bypassing bars

	Outer channel dredging	From west byp. bar	From east byp. bar
	(cy)	(70%, cy)	(30%, cy)
1997	267,655	187,359	80,297
1998	2,240,267	1,568,187	672,080
1999	1,040,919	728,643	312,276
2000	1,701,659	1,191,161	510,498
2001	834,645	584,252	250,394
2002	861,074	602,752	258,322
2003	1,144,987	801,491	343,496
2004	813,119	569,183	243,936
Yearly average:	1,113,041	779,128	333,912
BUILDING S	TRONG		Innovative s

Representation of Beaufort Inlet in GenCade

Estimated ebb shoal volume in 1900: 58.4 Mcy

4000 ft (1.2 km)

- Estimated ebb shoal volume in 2004:
 37.4 Mcy
- Channel depth in 1900 was 15 ft (MLW); dredged to 47 ft since 1994.
- Yearly average maintenance dredging
 1 Mcy; all disposed offshore until 1997.

ERDC

Innovative solutions for a safer, better world

Primary Grid Setup

- Almost no data on this stretch of coast
- 7 Inlets all at equilibrium
- Includes 3 beach fills on Bogue Banks
- Gated BC at Masonboro north jetty
- Dredging of Rich Inlet

Bogue Inlet Beach Fills Bear Inlet Brown's Inlet New River Inlet New Topsail Inlet Rich Inlet

Mason Inlet

	The state of the s				
Beach Location	Date	Added Berm width (ft)	Inlet	Date	Volume Dredged, cy
Pine Knoll Shores	2002	40.0	Rich Inlet	1999	200,000
Indian Beach	2002	57.0		2002	250,000
Emerald Isle (Phase 2)	2003	51.0		2003	90,000

BUILDING STRONG®

Innovative solutions for a safer, better world

Secondary - West Grid Setup

	Inlet	Da	te	Volume dredged cy		h dialata
	Carolina Beach Inlet	199	97	50,500		• 4 iniets
	Carolina Beach Inlet	199	98	1,525,50)0	 Masonboro with north weir jetty
	Masonboro Inlet	199	98	1,672,20	00	Dredging of Rich Masonboro and
	Carolina Beach Inlet	199	99	188,000	0	Carolina Basah Inlata
	Rich Inlet	199	99	200,000	0	Carolina Deach miers
	Carolina Beach Inlet	200	00	188,00	0	 Includes Fort Fisher revetment
	Carolina Beach Inlet	200)1	1,188,00	00	and Carolina Beach seawall
	Carolina Beach Inlet	200)2	188,00	0	Rich
	Rich Inlet	200)2	250,00	0	
	Masonboro Inlet	200)2	1,302,50	00	Mason
_	Carolina Beach Inlet	200)3	188,00	0	Midson
	Rich Inlet	200)3	90,000		Inlet
1	Carolina Beach Inlet	200)4	1,392,70	00	Masonboro
					Stores.	lalat
	Location	Date	Added E	erm Width (ft)		Beach fills
	Kure Beach	1997		159.68	Sec. 1	
	Kure Beach	1998		58.06	S. Berley	
	Wrightsville Beach	1998		95.34	1. 10	Carolina Beach
	Masonboro Island	1998		40.33		Inlet
	Carolina Beach	1998		94.52	Carl Carl	Carolina Booch
	Figure Eight Island	1999		38.71		
	Figure Eight Island	1999		38.71		seawall
	Carolina Beach	2001		78.47	1	
	Figure Eight Island	2002		48.44	- Service	Ft. Fisher
	Figure Eight Island	2002		48.44		revetment
	Wrightsville Beach	2002		67.97		Tevetment
	Figure Eight Island	2003		17.42		
	Kure Beach	2004		9.19		
G	Carolina Beach	2004	researe	53.36	-18 Octo	ber 2012 13

Results: Secondary-East Grid

Skill Score	Secondary-East Grid
BSS	0.63
RMSE (ft)	16.5
Bias (ft)	40.5
R ²	0.83
	Skill Score BSS RMSE (ft) Bias (ft) R ²

Innovative solutions for a safer, better world

Results: Primary Grid

Gencaue vvepinar, coastar miers research Program, 16-18 October 2012

Results: Secondary-West Grid

6.6

67.0

0.84

	Shorel
BUILDING S	STRONG

Www W

Innovative solutions for a safer, better world

ERDC

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Shoreline Change

RMSE (ft)

Bias (ft)

 \mathbb{R}^2

Mean Transport, 1980-1999

BUILDING STRONG_®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

Onslow Bay, NC - Summary

- Goodness of fit of the calculated shoreline (1997-2004) ranges from 0.37 to 0.71 (Brier Skills Score) with correlation coefficients (R²) ranging from 0.70 to 0.84.
- Results from the 20 year simulation indicate a gross mean sand transport on the order of 1,000,000 cy/yr consistently across all of Onslow Bay. The net transport is generally small, less than 200,000 cy/yr, and directed to the northeast from New River Inlet to Beaufort Inlet and to the southwest for the southern half of the bay.
- Results indicate Beaufort Inlet is a convergent nodal point, meaning the <u>net</u> sand transport is into the inlet shoals (or into the bay) on both sides of the inlet. Hence, dredging of the shoal should have minimal <u>net</u> impact to adjacent beach.

ERDC

BUILDING STRONG_®

Innovative solutions for a safer, better world

St. Johns County, FL – Problem **Statement**

What is the optimal dredging volume and interval, and beach placement volume and interval that will supply adequate sand to maintain two Shore Protection Projects in St. Johns County?

GenCade used to help answer:

What is the volumetric limit (cubic yards of sediment) that can be mined regularly from the ebb shoal in its present condition which does not cause a significant long-term effect on the morphology and volumetric recovery of the shoal?

How much sediment and what nourishment interval is required to maintain present volume of the active and planned Shore Protection Projects? ERDC

BUILDING STRONG®

Innovative solutions for a safer, better world

St. Johns County, FL – GenCade Grid Setup

Input:

- 1986, 1999 Shorelines
- Waves
- **Dredging/Placement Information**
- Structures

Model Calibration Also Dependent On:

- Equilibrium Shoal Volumes
- Inlet Bypassing Rates & Locations
- **Regional Contour**
- Interpolation of Waves Between Gage Stationing

Innovative solutions for a safer, better world

BUILDING STRONG®

50000

St. Johns County, FL – Ebb-Tidal Delta Volume Change

Innovative solutions for a safer, better world

BUILDING STRONG_®

St. Johns County, FL - Results Plotted on SMS Grid

St. Johns County, FL – Volumetric Results

BUILDING STRONG®

📕 Anastasia State Park 📕 St. Augustine Beach

Innovative solutions for a safer, better world

St. Johns County, FL - Summary

- The performance and estimate of certainty in GenCade as a sediment management planning tool is relative to the accuracy of the calibration. Furthermore, extensive analysis of measured data must be performed to properly inform the model on realistic bounds in a 3-dimensional morphologic environment.
- Though not all 3-dimensional morphologic processes are represented in the model, most general inferences about sediment transport and bypassing within the coastal zone can be applied to calculating future sediment budgets with GenCade.
- The benefits of coordinating and modifying dredging intervals can be explored simultaneously with varying beach fill volumes and intervals.
- The greatest benefit lies in determining optimal mobilization periods and coordinating regional efforts to save in mobilization and demobilization costs for dredging and beach fill placement.

ERDC

BUILDING STRONG®

Innovative solutions for a safer, better world

Overview – Sargent Beach and Matagorda Peninsula, TX

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

Calibration – Sargent Beach and Matagorda Peninsula

GenCade Input

- 1995 and 2000 shorelines
- Waves (WIS 73060, 73058,73055, 73053)
- Sargent Beach revetment
- Mitchell's Cut and Mouth of the Colorado River

Innovative solutions for a safer, better world

BUILDING STRONG®

Sargent Beach and Matagorda Peninsula: Net Transport

Innovative solutions for a safer, better world

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

BUILDING STRONG

Sargent Beach and Matagorda Peninsula: 1995-2000 Measured Shoreline Change

BUILDING STRONG®

Sargent Beach - Problem Statement

• Sargent Beach – fastest eroding beach in Texas

Determine feasibility of structural solutions to reduce erosion

- protect the beach habitat
- protect Gulf Intracoastal Waterway

Refined problem statement in Phase 2

- segmented breakwaters
- adaptive and scalable plan
- minimal downdrift impacts
- multiple layouts to accommodate incremental funding

BUILDING STRONG_®

Innovative solutions for a safer, better world

Sargent Beach alternatives use shorter grid than calibration

Breakwater alternatives required shorter grid due to computational time

BUILDING STRONG®

Alt 0: No Action Alt 1: 3,000,000 cubic yard beach fill Alt 2: Single Groin Alt 3: Groin Field Alt 4: Breakwaters Phase 1: 10 Breakwaters; 220 ft Breakwaters; 330 ft Gaps Phase 2: 15 Breakwaters

Final Phase: 81 Breakwaters

Innovative solutions for a safer, better world

- About 6 miles of shoreline recedes to revetment after 5 years
- Gross transport about 400,000 cy/yr over entire domain

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

Alt 1: 3 million cubic yard beach fill over 10 miles Placement density of 57 cy/linear foot Added berm width of 100 ft

Beach fill does not increase beach width

Additional nourishments required to protect the beach (not cost effective)

Innovative solutions for a safer, better world

BUILDING STRONG_®

Alt 2: Single Groin East of Mitchell's Cut plus Beach Fill

Beach Fill identical to Alt 1

Unrealistically long groin to demonstrate maximum trapping capacity

Alt 2a: Single Groin Only

Groin does not have impact on shoreline change northeast of 57+000 ft

Northeast of 57+000 ft, Alt 2 is identical to Alt 1 and Alt 2a is identical to Alt 0

Innovative solutions for a safer, better world

BUILDING STRONG®

Alt 3: Groin Field plus Beach Fill Beach fill identical to Alt 1 Includes 28 groins of 600 ft spaced 1800 ft apart Alt 3a: Groin Field Only

Groin field has little effect on shoreline in front of revetment

Groin protects shoreline at northern end of revetment, but recedes to almost same location as Alt 0 along most of the revetment

Innovative solutions for a safer, better world

BUILDING STRONG®

Alt 4: 10 breakwaters placed at 350 ft offshore

Breakwater length = 220 ft

Gap size = 330 ft

BUILDING STRONG®

Alt 4, Phase 2: 15 breakwaters placed at 350 ft offshore

Breakwater length = 220 ft

Gap size = 330 ft

Innovative solutions for a safer, better world

BUILDING STRONG®

Alt 4, Phase 3: 81 breakwaters placed at 350 ft offshore

Breakwater length = 220 ft

Gap size = 330 ft

Innovative solutions for a safer, better world

BUILDING STRONG®

Sargent Beach, TX - Summary

The best structural alternative at Sargent Beach is breakwaters Multiple offshore distances and depths were tested with the breakwaters at Sargent Beach

Several phases were simulated for selected Sargent Beach breakwater setup

Mitigation beach fill necessary southwest of Mitchell's Cut for Sargent Beach breakwaters

BUILDING STRONG

Innovative solutions for a safer, better world

Matagorda Peninsula - Problem Statement

Matagorda Peninsula – breached by ephemeral inlets in past

Determine feasibility of structural solutions to reduce erosion

- protect beach habitat
- reduce storm damage
- reduce sediment impoundment along the MCR east jetty

Refined problem statement in Phase 2

- groin field between 3 Mile Cut and MCR
- project goal to widen beach by 200 ft
- design so project does not impact 3 Mile Cut

ERDC

BUILDING STRONG®

Innovative solutions for a safer, better world

- Grid extends from 3.3 miles southwest of Mitchell's Cut to south west of MCR
- 28 miles long
- Smaller cell size
 between 3 Mile Cut and
 MCR
- 5 and 16 year long simulations

Innovative solutions for a safer, better world

BUILDING STRONG®

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

No beach fills 115,000 cy/yr of bypassing around MCR

P = 0.3

BUILDING STRONG®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

ERDC

After 16 Years

250 200 Alt 0: No Action Alt 0: No Action Alt 1: 400 Ft Groins, 800 Ft Spacing — Alt 1: 400 Ft Groins, 800 Ft Spacing 200 -Alt 2: 400 Ft Groins, 1200 Ft Spacing — Alt 2: 400 Ft Groins, 1200 Ft Spacing 150 Alt 3: 600 Ft Groins, 1200 Ft Spacing Alt 3: 600 Ft Groins, 1200 Ft Spacing — Alt 4: 600 Ft Groins, 1800 Ft Spacing Alt 4: 600 Ft Groins, 1800 Ft Spacing 150 Alt 5: 800 Ft Groins, 1600 Ft Spacing Alt 5: 800 Ft Groins, 1600 Ft Spacing 100 t 111111 100 Shoreline Change, Net Shoreline Change, ft 50 50 111 111 🖺 0 11 M \$5+000 80+000 110+000 105+000 100+000 35+000 30+000 **5**+000 110+000 105+000 100¥000 95+000 i 190+000 \$5+000 80+000 75+000 Net 111111 -50 1111 -50 -100 1 | | | | -100 -150 1111111 N/11111 1111111 1111111 1111111 -200 1111111 -150 Distance from Grid Origin, ft Distance from Grid Origin, ft

Based on preliminary simulations, Alt 5 was selected as the design alternative

Additional variations of Alt 5 were simulated

ERDC

BUILDING STRONG®

After 5 Years

Innovative solutions for a safer, better world

Matagorda Peninsula – Alt 5

BUILDING STRONG_®

GenCade Webinar, Coastal Inlets Research Program, 16-18 October 2012

Innovative solutions for a safer, better world

Matagorda Peninsula – Alt 5 Comparison

P = 0.3 for final design

Compare No Action to Alt 5 (no beach fill or bypassing) After 5 years, greatest accretion to northeast of first groin (less than 100 ft)

After 16 years, about 200 ft of accretion northeast of first groin

After 16 years, almost 300 ft of shoreline advance northeast of MCR

BUILDING STRONG®

Matagorda Peninsula – Alt 5

• Bypassing between 0 and 200,000 cy/yr may provide best result

• With 200,000 cy/yr of bypassing, erosion occurs with and without beach fills

• All cases result in accretion northeast of first groin

Innovative solutions for a safer, better world

BUILDING STRONG_®

Matagorda Peninsula - Summary

Shifting the groin field to the southwest significantly improved the results

Of the groin configurations modeled at Matagorda Peninsula, three groins of 800 ft spaced 1600 ft apart produced the best results

The rate of bypassing and the construction of a beach fill affects the shoreline change in the area

BUILDING STRONG®

Innovative solutions for a safer, better world