

COASTAL MODELING SYSTEM: ADVANCED TOPICS USING CMS 5.1 AND SMS 13.0

DAY 4: SALINITY/TEMPERATURE CALCULATIONS

Honghai Li, Mitchell Brown

UNCLASSIFIED

DISCOVER | DEVELOP | DELIVER

Outline

- Background
- Salinity/temperature calculations in CMS-Flow
- Setup of salinity/temperature calculations
 - -Initial condition
 - -Boundary condition
- Export CMS-Flow files

UNCLASSIFIED

Background

UNCLASSIFIED

- Water salinity and temperature influence environmental conditions in aquatic systems
- Changes in salinity can change the aggregation and consolidation of cohesive sediment
- Salinity and temperature can alter the water physical environment that impacts marine organisms with the change of water turbidity in coastal and estuarine systems
- Water quality and ecological models often require input of water temperature and salinity information from a hydrodynamic model
- Modifications of coastal inlets, such as channel deepening and widening and rehabilitation or extension of jetties, may alter the salinity/temperature distributions within the estuary
- Salinity/temperature calculations do not affect hydrodynamics in CMS

US Army Corps of Engineers • Engineer Research and Development Center •

Lavaca River Colorado River Matagorda Bay 15.0 12.0 9.0 6.0 3.0 0.0 Garcitas Cree Port O'Connor Pass Cavall Gulf of Mexico

Salinity/Temperature Calculations in CMS-Flow

$$\frac{\partial(Sd)}{\partial t} + \frac{\partial(Sq_x)}{\partial x} + \frac{\partial(Sq_y)}{\partial y} = \frac{\partial}{\partial x} \left[K_x d \frac{\partial S}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_y d \frac{\partial S}{\partial y} \right] + (P - E)S$$
$$\frac{\partial(Td)}{\partial t} + \frac{\partial(Tq_x)}{\partial x} + \frac{\partial(Tq_y)}{\partial y} = \frac{\partial}{\partial x} \left[K_x d \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_y d \frac{\partial T}{\partial y} \right] + \frac{J_T}{\rho c_P}$$

- S: depth-averaged salinity
- *T*: depth-averaged temperature
- d: total water depth

ρ: water density c_P : specific heat

- I_T : net heat flux across water surface

- q_x , q_y : flow per unit width
- K_{χ}, K_{ν} : diffusion or mixing coefficients of salt and heat
- **P: Precipitation**
- *E*: Evaporation
- CMS-Flow lateral open and flux boundaries allow water exchanges with specifications of input salinity ۲ and temperature
- Surface boundary requires specifications of precipitation and evaporation for salinity and air-water heat exchange for temperature
- Initial condition files need to be prepared based on measured data

UNCLASSIFIED

Setup of Salinity/Temperature Calculations (Initial Condition)

HYDRAULICS

Specify a constant initial value for the entire model domain or generate a spatially varying initial salinity field

- Go to CMS-Flow Simulations -> Model Control
- Check Calculate salinity and choose the Spatially varied toggle under the Initial condition
- Click Select -> Create toggle and Data Set Toolbox pops up
- Assign a value and name the initial condition dataset in the pop-up window
- "Salinity Initial Concentration" appears in the Flow data tree
- Highlight the dataset to specify different salinity values in the CMS domain

Setup of Salinity/Temperature Calculations (Lateral Boundary Condition)

6

SMS 13.0.8 (64-bit) - [MB_Salt.sms] File Edit Display Feature Objects Window H File Edit Display Feature Objects Window H Comparison of the second	Are Boundary Condition Options Name: Type: WSE forcing WSE Source: Curve Define curve: WSE offset / Sea Level Change: Constant value for WSE Offset (m): o.o Salinity Oefine Salinity Curve Temperature Define Temperature Curve	Vy: Vy: Flow rate-forcing Delete Define Domain Split Arc(s) Offset Arc(s) Align Arc(s) With Contour Reverse Arc Direction Smooth Arc(s) Transform Assign Boundary Conditions Clear Selection Invert Selection Zoom to Selection Select Connected Arcs Turning Left	 Specify time series of salinity values along lateral boundaries Go to CMS-Flow Simulations -> Boundary Conditions Right-click boundary arc. Select Assign Boundary Conditions and check Define Salinity Curve under Salinity Click small icon and import salinity values (manually key in the values or read from a *xys data file)
	Help	ок Cancel th = 120427.188724 m; Num segments = 123.	CHL COASTAL & HYDRAULICS LABORATORY

Setup of Salinity/Temperature Calculations (Air-water Heat Exchange)

HYDRAULICS

Use meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature and the bulk formulas to calculate the heat flux components

Short Wave Solar Radiation

$$J_{SW} = J_{SW,CLR} (1 - 0.65C_{CLD}^2) (1 - R_{SW}) (1 - f_{SHD})$$

Long Wave Atmospheric Radiation

 $J_{LW} = \varepsilon_{AIR} \sigma T_{AIR}^4 (1 + 0.17 C_{CLD}^2) (1 - R_{LW}) - \varepsilon_{WTR} \sigma T_{WTR}^4$

Latent Heat Flux

$$J_E = f(U_{WND})(e_{AIR} - e_S)$$

Sensible Heat Flux

$$J_{S} = C_{B}f(U_{WND})(T_{AIR} - T_{WTR})$$

Total Heat Flux: $J_T = J_{SW} + J_{LW} + J_E + J_S$

US Army Corps of Engineers • Engineer Research and Development Center •

Setup of Salinity/Temperature Calculations (Air-water Heat Exchange)

LABORATORY

Wind, air temperature, and cloud cover were obtained from National Centers for Environmental Information:

https://www.ncdc.noaa.gov/cdo-web/datatools/lcd

(~

Solar radiation data from National Solar Radiation Data Base:

http://rredc.nrel.gov/solar/old data/nsrdb/

Data Sets		
National Solar Radiation Database 1961-1990	National Solar Radiation Database 1991-2010 Update	National Solar Radiation Database 1998-2014 Update
ne (vational Solar Kaloution Data Dase 1961-1990 NSRDB) contains 30 years of solar radiation and upplementary meteorological data from 237 NWS sites a the U.S., plus sites in Guam and Puerto Rico.	The updated 1991-2010 National Solar Radiation Database holds solar and meteorological data for 1,454 locations in the United States and its territories.	The current version of the NSRDB (v2.0.0) was developed using the Physical Solar Model (PSM), and offers users the latest available data (1998–2014). NSRDB comprises 30-minute solar and meteorologic data for approximately 2 million 0.038-degr latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered bordered by longitudes 25° W on the east an 175° W on the vest, and by latitudes -20° S on the south and 60° N on the north.
 Hourly Solar Data Statistical Summaries Daily Statistics Files Solar Radiation Data Manual for Buildings Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors 	 Hourly Solar Data Statistical Summaries Daily Statistics Files Hourly Statistics Files Threshold Files 	 30-minute Solar Data on the NSRDB Data Viewer
Documentation & User's Manuals		
National Solar Radiation Data Base User's Manual	National Solar Radiation Database 1991-2010 Update:	Standard Time Series Data File Format
This document describes the National Solar Radiation Data Base, 1961-1990. The manual provides guidance in using data base products, acquaints the user with the many features of the data base, and provides information on how to	This document describes the National Solar Radiation Data Base Update 1991-2010. The manual provides guidance in using data base products, acquaints the user with the many features of the data base update, and provides information on how to use data have conduct	This document describes the format in which data is downloaded from the NSRDB Data Viewer. Model and Database Development

UNCLASSIFIED

Setup of Salinity/Temperature Calculations (Initial and Surface Boundary Conditions)

COASTAL & HYDRAULICS LABORATORY

9

□ □ □ □ ≥ ≤ ≤ ≦ ● 1 1 □ □ □ ≥ ≤ </th <th>Salinity Calculate salinity Time steps</th> <th></th>	Salinity Calculate salinity Time steps	
Image: Construct a coverage Grid Imag	Transport rate: 60.0 Temperature Calculate Temperature Time steps Transport rate: 60.0 80.0 Initial condition Constant Water Temperature Water properties Water density: 1025.0 kg/m^3 Constant Water Temperature: 18.85 °C Atmospheric Parameters Time (hr) Air Temp (°C) Cloud Cover 1 0.0 16.8 10.6 0.75 2 1 15.9 10.2 0.44 3 2 15.6 9.7 0 3 2 15.6 9.7 0	 Specify a constant initial value for the entire model domain or generate a spatially varying initial temperature f Go to CMS-Flow Simulations -> Model Control Check Calculate temperature and choose the Constant Water Temperature toggle under the Incondition Assign a value of 18.85 ° C Import time series of meteorolog parameters
(3673529.0, 1162360.0)	0 0 128 0.2 0 7 6 12.8 10.2 0 8 7 11.7 10.1 0 9 8 16.7 8.2 0 10 9 17.3 7.4 0 11 10 17.5 7.6 0 Copy/Paste Mode Import Export Insert Above Help OK Cancel	

Setup of Salinity/Temperature Calculations (Lateral Boundary Condition)

HYDRAULICS

10

US Army Corps of Engineers • Engineer Research and Development Center •

Export CMS-Flow Files

HYDRAULICS

RP

UNCLASSIFIED

Simulation Results

Temperature – Corrotoman River

US Army Corps of Engineers • Engineer Research and Development Center •

LE3.3

05

12

References

Salinity Calculations in the Coastal Modeling System

Li, H., Reed, C., and Brown, M. (2012) https://erdc-library.erdc.dren.mil/xmlui/handle/11681/1981

Temperature Calculations in the Coastal Modeling System Li, H. and Brown, M. (2017)

https://erdc-library.erdc.dren.mil/xmlui/handle/11681/21666

US Army Corps of Engineers • Engineer Research and Development Center •

HYDRAULICS